Распределенный впрыск многоточечный что это?

Как работает система распределенного впрыска топлива MPI

Система распределенного (многоточечного) впрыска топлива MPI используется только на бензиновых двигателях и является наиболее популярной в мире. В данной системе каждый цилиндр оснащается индивидуальной форсункой, которая впрыскивает топливо непосредственно перед впускным клапаном. Многоточечный впрыск идеально соответствует высоким экологическим стандартам, а также требованиям, предъявляемым к смесеобразованию в современных двигателях.

  1. Основной принцип работы системы MPI
  2. Конструкция системы многоточечного впрыска
  3. Режимы работы MPI
  4. Отличия системы MPI
  5. Преимущества и недостатки многоточечного впрыска

Основной принцип работы системы MPI

Обозначение MPI расшифровывается как Multi-point injection, что означает “многоточечный впрыск”. Наиболее часто такая маркировка встречается на европейских автомобилях.

Конструкция системы многоточечного впрыска

Она состоит из следующих элементов:

  • дроссельная заслонка;
  • распределительная магистраль или топливная рампа;
  • электромагнитные форсунки (инжекторы);
  • датчик массового расхода воздуха или датчик давления и температуры воздуха;
  • регулятор давления топлива.

Схема распределенного впрыска

В такой системе питания воздух из атмосферы проходит через воздушный фильтр, датчик массового расхода воздуха и затем через дроссельную заслонку попадает во впускной коллектор. Далее он распределяется по каналам цилиндров.

В свою очередь, топливо подается при помощи насоса через топливный фильтр и рампу к форсункам. Последние расположены вблизи впускных клапанов цилиндров, что снижает потери топлива и вероятность его оседания во впускном коллекторе. Работу форсунок контролирует ЭБУ двигателя. Количество топлива, которое должно поступить через форсунки, блок управления рассчитывает на основе информации о режимах, нагрузке и оборотах двигателя, а также на основе информации о количестве поступившего в систему воздуха, полученной от целого комплекса датчиков (температуры, давления). В соответствии с расчетами, ЭБУ подает импульсные сигналы на электромагнитные форсунки, приводя их в работу.

Помимо управления режимами работы инжекторов, блок управления проводит регулярную диагностику состояния системы впрыска и при обнаружении неисправностей выдает соответствующий сигнал об ошибке на приборной панели (“Check Engine”).

Режимы работы MPI

В зависимости от режима работы форсунок различают несколько видов системы:

  • Одновременный впрыск. В такой системе все инжекторы открываются одновременно, подавая топливо в каждый цилиндр. Такая схема представляет собой усовершенствованный моновпрыск, поскольку ЭБУ управляет процессом открытия и закрытия всех форсунок как открытием одной. С другой стороны, объем подаваемого топлива для каждого отдельного цилиндра может быть разным.
  • Попарный впрыск. Открытие электромагнитных форсунок происходит парами, но при этом одна работает на такте впуска, а вторая в момент выпуска отработавших газов. В настоящее время такая схема применяется только на этапе запуска мотора или в аварийной режиме.
  • Индивидуальный впрыск. Это наиболее часто используемая схема, при которой каждая форсунка срабатывает по отдельности на такте впуска. Для обеспечения их работы в системе предусмотрен датчик фаз газораспределения. Он устанавливается на распределительном валу и определяет время срабатывания каждой форсунки в зависимости от положения вала. Впрыск топлива в каждый цилиндр происходит один раз за один рабочий цикл двигателя. Классическая последовательность работы форсунок: 1-3-4-2.

Отличия системы MPI

Многие путают MPI с распределенным впрыском в целом, куда также входит система непосредственного впрыска GDI (FSI, DISI, TSI), при которой подача топлива осуществляется напрямую в каждый цилиндр. Это важное различие, поскольку Multi-point injection предполагает образование топливовоздушной смеси в каналах впускного коллектора перед впускными клапанами.

Помимо этого, двигатели с многоточечным распределенным впрыском являются атмосферными, без использования наддува. А это означает, что такие двигатели имеют менее жесткие требования к качеству топлива.

Преимущества и недостатки многоточечного впрыска

Главными достоинствами системы распределенного (многоточечного) впрыска является более экономичный расход топлива и соответствие требованиям экологических стандартов в сравнении с моновпрыском или карбюратором. С другой стороны, двигатель MPI менее мощный, нежели моторы с непосредственной подачей топлива в цилиндры двигателя. При этом, в сравнении с системами с непосредственным впрыском, отличается менее затратным обслуживанием.

К недостаткам распределенного впрыска можно отнести сложность изготовления, и, как следствие, высокую стоимость. Это также относится к ремонту электронной системы и инжекторов. Для обслуживания и диагностики необходимо специализированное оборудование и высококвалифицированные специалисты.

Для отечественных условий системы многоточечного распределенного впрыска считаются наиболее оптимальными по соотношению стоимости и удобства обслуживания, а также по уровню получаемой мощности и комфорту эксплуатации.

Распределенный многоточечный впрыск

Система впрыска – основной составляющий элемент системы топлива в транспортном средстве, форсунка выступает в качестве основного рабочего «органа». На сегодняшний день не составит труда найти большое количество разнообразных устройств, их задача сводится к обеспечению впрыска. В статье будет рассмотрен многоточечный впрыск – его особенности, достоинства, а также основные отличия от некоторых других систем.

Особенности действия

Особенности деятельности и существования данной системы базируются на том, что необходимо обеспечивать бесперебойную подачу топлива в цилиндры с помощью форсунок, число которых равно количеству цилиндров.

Если рассматривать классификационные моменты по принципу работы, то можно выделить две основные группы систем – непрерывный впрыск и импульсную подачу. Есть электронный и механический варианты контроля их работы.

Разновидности

Рассматривая конструкции, которые предполагают распределенный впрыск топлива, можно выделить наиболее распространенные моменты:

  • K-JETRONIC – механический элемент в непосредственной подаче топлива, используется часто.
  • L-JETRONIC – система, в которой наблюдается импульсное действие элементов, находящихся под электронным управлением.
  • KE-JETRONIC – механический элемент подачи топлива непрерывного типа.

Надо отметить, что все эти варианты уже устарели и являются очень капризными конструкциями.

Таким образом, система может иметь несколько разновидностей, зависящих от определенного набора факторов и характеристик работы.

Другой вариант классификации

Система может быть нескольких видов и вариантов.

  • Одновременная комбинация – с практической точки зрения встречается редко. За один оборот все форсунки в ней срабатывают в одновременном порядке.
  • Параллельная работа (попарно) – в течение одного оборота вала происходит парное срабатывание форсунок, по одному разу за оборот.
  • Фазированная, последовательная – когда за выполнение валом одного оборота происходит отдельное регулирование любой из форсунок. При этом открытие элемента осуществляется 1 раз перед впуском.

Независимо от варианта классификации все механизмы имеют различия по ряду параметров, учитываемых в ходе эксплуатации.

Устройство

Система в целом имеет в составе основные узлы.

  1. Бак топлива – является компактным элементом, который имеет насос, фильтр для чистки от механических частиц. Он предназначен для хранения топлива.
  2. Инжектор используется с целью образования смеси – эмульсии, а также для ее подачи в цилиндры.
  3. Блок управления – его установка осуществляется непосредственно на двигателях с инжектором.
  4. Топливный насос – используется обычно традиционный вариант. Он представлен электрическим двигателем с высокой мощностью.

Таким образом, рассматриваемый механизм является простым и прогрессивным, позволяет добиваться нужных результатов при его использовании и ездить с комфортом.

Особенности многоточечного механизма

Система впрыска используется почти всеми изготовителями авто.

Управление каждой форсункой производится в «личном» порядке. Время, когда это происходит, заложено программой управленческого блока. Если их активировать, происходит замена параллельным пуском.

Система по мере прогревания двигателя может демонстрировать должные качества работы на повышенных оборотах. Поломка датчика способствует иногда переходу устройства в полностью аварийный режим, его показания учитывает блок управления в процессе определения дозировки жидкости. Управление таким механизмом сегодня производится посредством специального компьютера, который называется электронным управленческим блоком. Для вычисления нужного момента открытия форсунок важно получать информационные данные от датчиков. Важный показатель – объем потоков, которые поступают в двигатель и измеряются датчиком.

Читайте также  Реле бензонасоса форд мондео 4 где находится?

В процессе вычисления подачи определенного количества топлива, которое необходимо для бесперебойной работы агрегата, компьютер анализирует другую информацию – это температурные и влажностные режимы, набор прочих параметров.

Резюме

Таким образом, рассматриваемая система впрыска топлива является достаточно простой и оригинальной в своей работе, позволяя пользователям достигать комфортного результата и чувствовать себя за рулем безопасно.

Система распределенного впрыска топлива: принцип действия, достоинства и недостатки

Система распределенного впрыска – это современная и наиболее прогрессивная многоточечная система топливной подачи, применяемая на бензиновых двигателях. Особенностью подобной системы является то, что каждый цилиндр ДВС оснащен собственной форсункой, через которую происходит дозированная подача топлива.

Двигатели, оснащенные системой распределенной подачей топлива, имеют более высокие показатели экономичного расхода ТС и низкий уровень токсичности отработанных газов.

Виды систем распределенного впрыска

Современные системы распределенного типа подачи топлива разделены на несколько видов:

  • По принципу работы – системы импульсной и непрерывной подачи ТС;
  • По способу управления – системы на механическом и электронном типе управления;
  • По времени открытия топливных форсунок – системы с попарно-параллельным впрыском (при подаче топлива попарно), одновременным впрыском (при одновременной подаче топлива во все форсунки), фазированным впрыском (при индивидуальной подаче топлива для каждой форсунки), прямым впрыском (подача топлива осуществляется в камеру сгорания цилиндра, минуя впускной коллектор).

Наиболее распространенными системами распределенной подачи ТС являются системы KE-Jetronic, K-Jetronic и L-Jetronic, разработанные компанией Bosch.

Система K-Jetronic относится к механическим топливным системам с непрерывной подачей ТС.

Система типа KE-Jetronic одна из разновидностей механической топливной системы непрерывного типа с электронным способом управления.

Система L-Jetronic представляет собой систему импульсной подачи топлива с электронным типом управления.

Система распределенной подачи ТС состоит из следующих подсистем и компонентов:

  • систем подачи и очистки топлива и воздуха;
  • системы сжигания бензиновых испарений;
  • системы выпуска и сжигания отработанных газов;
  • электронного блока управления с входными датчиками

Как работает система распределенной подачи ТС

Работа основных элементов системы – форсунок напрямую зависит от центра управления – управляющего блока, состоящего из бортового компьютера. Основной функцией управляющего блока является прием электрических сигналов, поступающих от входных датчиков, с последующей обработкой и преобразованием в управляющие сигналы, которые передаются на электромагнитные клапаны топливных форсунок и механизмы исполнения.

Помимо основных функций, блок управления выполняет и дополнительные задачи – проводит своевременную диагностику топливной системы на предмет выявления любых неполадок или поломок в ее работе.

При обнаружении неполадок блок управления сообщает о них водителю через контрольные лампы на приборной панели — Check engine, Check. Информация о более сложных поломках заносится в блок памяти для дальнейшего использования при повторной диагностике.

Расчет нужного количества топлива, происходит на основании данных полученных от температурных датчиков (температуры двигателя и поступающего воздуха), расхода воздуха, подсчета скорости вращения коленвала, угла открытия заслонки и т.д.

Произведя необходимые расчеты на основании полученных данных, бортовой компьютер посылает сигналы в виде электрических импульсов на форсунки для их открытия. Принимая сигналы, форсунки открывают клапаны, через которые топливо под высоким давлением поступает в топливный коллектор.

Преимущества и недостатки системы распределенной подачи ТС

Подобный тип системы топливной подачи имеет некоторые преимущества и недостатки. Наиболее значимые из них мы отдельно выделим.

Преимущества системы:

  • долговечность и надежность;
  • высокая экономичность использования топлива;
  • низкая токсичность отработанных газов бензиновых ДВС;
  • низкая вероятность появления сбоев в работе системы в условиях экстремального вождения (например, при преодолении крутых спусков и подъемов, при езде в дождь или гололед).

Недостатки системы:

  • сложная и дорогостоящая конструкция, оснащенная чувствительной системой электронного управления;
  • высокая стоимость ремонта и замены основных электронных элементов системы;
  • особенность конструкции требует проведения ремонтных и профилактических работ только высококвалифицированными специалистами.

Впрыск топлива: прямой vs распределенный.

На самом деле, при помощи газовой педали осуществляется управление воздухоподачей внутрь цилиндров. А в зависимости от температуры мотора и его реальной производительности, будет подано и необходимое количество топлива для приготовления оптимального состава горючей смеси.

Например, у давно устаревших двигателей с карбюратором дозировка бензина осуществлялась по принципу разрежения воздуха, находящегося за заслонкой дросселя, управление которой осуществлялось педалью «газ». Сразу стоит сказать, что дозировка бензина в таком типе силового агрегата не отличалась точностью, вследствие чего карбюраторный мотор нельзя было назвать экономичным и экологически безопасным. В итоге это и послужило толчком к полному списанию карбюраторных моторов с производства.

Карбюраторные системы впрыска топлива с успехом заменили системы форсунок, подача и впрыск топливной смеси в которых осуществляется под давлением, его обеспечивает бензонасос.

Выделяют три основных типа систем впрыска:

  1. центральная;
  2. распределительная;
  3. прямая.

Однако сегодня на автомобилях применяются только последние две. Если говорить о центральной системе распределения впрыска (моновпрыске), то ее работа оказалась неэффективной, поскольку топливная смесь неравномерно распределялась по цилиндрам, а на впуске возникало значительное сопротивление, в результате чего не удалось достичь требуемого уровня экономичности. По этой причине и в связи с ужесточением норм экологической безопасности, моноврпрыск, как и карбюратор, также канул в Лету.

Относительно распределительной (многоточечной) системы впрыска MPI -Multi Point Injection можно сказать, что в ее работе также далеко не все в порядке. Однако, ее «конкуренту» – системе прямой подачи топлива, которую с конца ХХ века стал использовать на всем своем модельном ряде концерн Mitsubishi, более чем за 15 лет так и не получилось отправить MPI в отставку. Теме не менее, по прогнозам специалистов, это когда-нибудь да случится, и систему распределительного впрыска, как карбюратор и центральный впрыск отправят на «свалку автомобильной истории».

Действительно ли использование системы прямой топливоподачи настолько эффективно и оправдано, что скорое вытеснение с рынка MPI неизбежно? Дабы правильно ответить на этот вопрос, стоит провести сравнение этих систем топливоподачи.

В отличие от центрального типа топливовпрыска в этих обеих системах бензин впрыскивается через форсунку в цилиндр силового агрегата, но в распределенной системе предусмотрен впускной коллектор, через который вначале проходит топливо.

Во время прямой подачи топлива его впрыск осуществляется непосредственно в цилиндр, а точнее, в его камеру сгорания. Пожалуй, это и является главным отличием двигателей, которые у разных производителей имеют свои буквенные обозначения: CGI (Mercedes), FSI (Volkswagen), GDI (Mitsubishi), HPi (Peugeot) от модельного ряда моторов MPI.

Интересно, а чем же так хорош прямой впрыск топлива в цилиндр? Реально – ничем, если учитывать конструкционные особенности моторов. А все потому что в этом случае на создание горючей смеси и испарение паров бензина выделено слишком мало времени, чем при его прохождении через впускной коллектор, когда на выходе в цилиндр поступает уже полностью готовая смесь.

Рассмотрим и другие отличия агрегатов HPi, GDI, CGI и FSI от модельного ряда MPI-моторов:

  1. В системе прямого впрыска, давление проходящего через форсунку топлива, в несколько десятков раз выше, нежели в системе распределенного впрыска. Это достигается благодаря применению ТНВД в конструкции силовых агрегатов с прямым топливовпрыском.
  2. Специальная конструкция форсунок системы прямой топливоподачи позволяет раскручивать капельки бензина на выходе, благодаря чему быстрее осуществляется их испарение. В то время как вся функция форсунки распределительной системы состоит из средств формирования топливного факела.
Читайте также  Как заменить мотор печки на калине?

Как видно, система топливоподачи MPI гораздо проще во всех отношениях. Но, это далеко не все. В двигателях с прямой подачей топлива на их производительность влияет распределение воздуха внутри них и количество впрыснутого топлива в цилиндры. По этой причине поршневая часть в агрегатах с системой прямого впрыска имеет сложную профилированную конструкцию.

Подобную функцию выполняют и клапаны впуска в конструкции коллектора системы прямой подачи топлива. В конструкции HPi, GDI, CGI и FSI агрегатов предусмотрено послойное образование горючей смеси. Это говорит о том, что полностью сгорает лишь небольшое количество топлива, находящееся вблизи свечи зажигания либо происходит процесс разрушения этого облака из горючего для того, чтобы сделать всю рабочую смесь более обогащенной. В силовых бензиновых агрегатах конструкции MPI каналы для впуска топлива необходимы исключительно для впрыска смеси бензина с воздухом в цилиндры, поэтому они не имеют заслонок и винтовой формы, как моторы с прямой топливоподачей.

Такими «наворотами» перечисление отличий системы прямой подачи топлива от распределенной не заканчивается. Однако, большинство заметных моментов уже описаны выше. Если копнуть поглубже, то стоит отметить, что топливный насос высокого давления, наличие специального впускного коллектора, поршневой части особой конструкции и сложной системы форсунок отчасти можно отнести к недостаткам, наличие которых вовсе не говорит, что лишенным этого двигателям MPI придется сойти с дистанции. Во всяком случае, в ближайшее время.

Но, рано или поздно, это все же произойдет. И опять-таки по той же причине, которая относительно недавно сделала карбюратор и систему центральной подачи топлива достоянием политехнических музеев – отсутствие у системы распределенной подачи бензина высоких показателей экономии топлива без потери мощности силового агрегата, и большое количество вредных соединений в выхлопных газах автомобиля. Проведенные тестирования систем топливоподачи выявили, что силовые агрегаты с системой прямого впрыска топлива в отличие от других моторов, имеющих одинаковый объем, позволяют экономить порядка 20-25% топлива, при этом их мощность возрастает на 10%. Естественно, что ни один из существующих автопроизводителей не станет пренебрегать заявленными удовольствиями!

Но, наличие большого количества преимуществ вовсе не говорит об отсутствии недостатков. У системы прямой подачи топлива есть свой «скелет в шкафу». Если рассматривать экологическую составляющую использования прямого впрыска, то она практически идеальна, за исключением одного «но» – повышенного содержания сажи в выхлопных газах. Это и делает систему прямой топливоподачи единственным конкурентом дизельным силовым агрегатам. А это уже реальная возможность FSI поладить с MPI. Это было бы классно, но, во всяком случае, этим системам придется ладить друг с другом в одном двигателе.

Именно эту идею и воплотили в жизнь конструкторы компании Volkswagen, объединив в одном моторе обе системы MPI и FSI. Двигатели 1,8 и 2,0 TFSI относятся к третьему поколению агрегатов EA888.

avtoexperts.ru

Молодое поколение водителей уже и не знает, что раньше инжекторных моторов не было – почти все бензиновые силовые агрегаты были карбюраторные. Но экология и развитие технологий вытеснили их, сегодня системы подачи топлива сплошь компьютерные. Но их развитие не остановилось. Современный автомобиль с бензиновым мотором может быть оборудован тремя типами впрыска – распределенным, непосредственным или комбинированным. Чем они отличаются и какой из них лучше рассмотрим в этой статье.

Распределенный впрыск (MPI)

Формально это не первый вид впрыска, и не он пришел на смену карбюратору. Был еще так называемый моновпрыск – топливо во впускной коллектор подавала одна форсунка. Несмотря на то, что управление у нее было электронным, по сигналам с датчиков, заметного преимущества моновпрыск перед карбюратором не дал: основная проблема с оседанием топлива на стенках коллектора сохранилась. Моновпрыск популярности не получил, а автомобильные инженеры сразу перешли к впрыску распределенному.

Основная его особенность – наличие индивидуальной форсунки на каждый цилиндр. Впрыск топлива происходит во впускной коллектор, в нем происходит смесь с воздухом. Форсунки расположены около впускных клапанов, топливу не нужно блуждать по недрам коллектора, смесь получается стабильной. Уже этот факт позволил снизить расход, повысить мощность и улучшить экологичность. Кроме того, система распределенного впрыска получилась недорогой – форсунки простые, бензонасос дешевый, все отточено и хорошо работает. Неудивительно, что распределенный впрыск до сих пор остается самым популярным, особенно на недорогих автомобилях, для которых себестоимость производства и цена владения имеют важное значение.

Минус у распределенного впрыска сегодня один – он достиг потолка по эффективности. Инженеры уже выжали максимум, дальше ни расход топлива снижать, ни мощность увеличить невозможно, поэтому конструкторам приходится искать новые варианты, чтобы укладываться во все более строгие экологические рамки и удовлетворять запросы покупателей, которые постоянно хотят более экономичные и более мощные автомобили.

Непосредственный впрыск (GDI)

Довольно очевидно, что главное направление улучшения характеристик – образование топливо-воздушной смеси прямо в цилиндре. Да, по сравнению с карбюратором и моновпрыском, потери топлива на проход по коллектору у распределенного впрыска заметно меньше, но они все равно есть. Что-то остается на коллекторе, что-то на впускных клапанах. Всего этого можно избежать если подавать бензин прямо в цилиндр. Так и происходит на моторах с непосредственным впрыском.

То, что это работает, хорошо видно по характеристикам. GDI-моторы мощнее и экономичнее собратьев с распределенным впрыском. Прибавка составляет порядка 5-10%, что не так уж и мало. Такой результат достигается не только за счет меньшей потери топлива, но и за счет гибкости, которую инженеры получают в настройке впрыска. Например, они могут «играть» с так называемым стехиометрическим числом – соотношением бензина и воздуха в смеси. Обедненные смеси, в которых мало бензина, но много воздуха, на распределенном впрыске невозможны – они просто напросто не смогут воспламениться по законам физики. У непосредственного впрыска эта проблема решена очень элегантно, бензин распыляется около свечи зажигания, рядом с ней смесь богатая, но по всему остальному цилиндру – бедная. Получается, что и с воспламенением проблем нет, и топлива используется меньше.

Еще одна перспективная тема для непосредственного впрыска – управлением моментом подачи топлива. В зависимости от нагрузки на мотор, топливо можно подавать на разных циклах движения поршня (например, на сжатии или на впуске) и получать нужный результат по соотношению мощность/экономичность. Эта сфера еще не до конца исследована и оставляет инженерам большой простор для улучшения показателей моторов.

Казалось бы, непосредственный впрыск намного лучше распределенного и должен был бы его уже вытеснить. Но оказалось все не так просто. У GDI-моторов нашлись и серьезные минусы.

Во-первых, сильно усложнилась конструкция. Форсунки более дорогие и сложные, обычного насоса в баке уже не хватает, требуется использовать дополнительный ТНВД, который повышает себестоимость системы. Кроме того, очень сильно возрастают требования к качеству топлива. Форсунки и ТНВД сильнее страдают от некачественного бензина, а ремонт оказывается очень дорогим. Неудивительно, что на дешевых машинах непосредственный впрыск встречается нечасто – он реально дороже в обслуживании чем распределенный.

Читайте также  Как поменять стойки стабилизатора на ланосе?

Во-вторых, обнаружились и технические проблемы. То, что бензин не проходит через впускные клапана обратилось не только в плюсы, но и в минусы для самих клапанов. Они больше не смазываются и не охлаждаются бензином. Из-за этого на машинах с непосредственным впрыском на впускных клапанах часто образуется нагар, а это приводит к неправильной работе всего мотора. Яркий пример – двигатель ЕP6 (Prince), о котором мы уже рассказывали.

Не удивительно, что в России первые GDI-моторы получили так сказать «плохую прессу», с российским «серным» бензином ТНВД и форсунки служили недолго, а их замена всегда была дорогой. Сейчас качество топлива чуть выросло, да и агрегаты постепенно избавляются от детских болезней, но до сих пор нужно признать, что распределенный впрыск в целом чуть более надежный чем непосредственный.

Нельзя сказать, что перечисленные недостатки ставят крест на непосредственном впрыске, но то, что они сдерживают его развитие, это точно.

Комбинированный впрыск

Популярная тема последних 5-6 лет – использование на одном моторе обоих типа инжектора. То есть у машины есть два комплекта форсунок – один установлен перед клапанами во впускном коллекторе, а второй – прямо в цилиндрах. В зависимости от настройки ЭБУ, в разных режимах может работать как одна форсунка, так другая, или вообще обе сразу – тут тоже непаханное поле для экспериментов и улучшений. Обычно в простых режимах движения используются форсунки в коллекторе, а когда нужно поднажать и от мотора требуется максимум, то подключаются форсунки в цилиндрах. Может быть и чуть иначе, настройки у каждого мотора свои.

Объединение впрысков помогает решить технические проблемы. Если часть бензина идет из коллектора, то впускные клапана нормально охлаждаются и смазываются. Жизнь форсунок тоже по идее должна увеличиться, ведь они теперь используются по очереди. При этом все эксперименты с бедной смесью и временем впрыска на комбинированной системе тоже возможны.

Однако проблему сложности и долговечности комбинированный впрыск не решает. У него все равно есть ТНВД, дополнительные форсунки и очень замороченная настройка. Своими силами ремонтировать такие машины очень сложно. Есть и другие заморочки в обслуживании таких машин, например, при установке ГБО, уже есть «газовые» решения, которые могут работать и с комбинированным впрыском, но они дорогие и сложные в настройке и установке.

На сегодняшний момент с разными типами инжекторов сложилась понятная ситуация – есть отработанная и проверенная технология (мы имеем в виду распределенный впрыск), которая за годы использования избавилась от проблем, дешева и надежна, но которая исчерпала резервы к улучшению и уже не всегда устраивает по эффективности. И есть более перспективные технологии, сложные, пока менее надежные и заметно более дорогие, но дающие лучший результат и в целом более прогрессивные. Наверное, когда-то распределенный впрыск тоже будет отправлен на свалку истории, но у нынешних покупателей машин есть выбор – либо предпочесть надежность и дешевизну, либо мощность и экономию топлива. И не факт, какой из этих выборов лучше.