Как работает дроссельная заслонка на дизельном двигателе?

Дизельный дроссель

BKD — двухлитровый дизельный двигатель с насос-форсунками. Старый добрый дизель не капризный к топливу, но со своими болячками. К нам такие приезжают редко, но у одного нашего механика была Octavia именно с таким мотором, поэтому немного этот двигатель мне знаком. Из дружественного сервиса присылают машинку — Octavia II 2008 с BKD. Ошибки, говорят, по дросселю, по вентиляторам и по датчику температуры. Датчик поменяли, дроссель помыли, дальше «наши полномочия как бы уже фсё…». Визуально горит только CheckEngine, но двигатель работает ровно и на динамику хозяин не жалуется. А вот диагностический сканер жалуется на блок управлением вентиляторами, датчик температуру на выходе из радиатора и дроссельную заслонку. Позвольте, какую заслонку. Это ж дизель, чего тут дросселировать? Дизелю не нужно разряжение на впуске. Хотя есть товарищи экологи, которые считают иначе. Дизелю нужно разряжение на впуске! Чтоб лучше мог засасывать отработанные газы. Есть такая система EGR — рециркуляция отработанных газов. На дизеле эта система особенно актуальна. нужна, чтоб уменьшать количество окислов азота NOx — очень вредная штука, которую вырабатывает при работе дизель. Про систему EGR подробнее расскажу в другой раз. Сейчас важно понять, что дроссель на дизеле нужен для экологии. И правильно его называть — воздушная заслонка. Дроссель — это аналогия с бензиновым мотором.

Неудивительно, что на работу мотора неисправность воздушной заслонки не влияет — она прикрывается только в определённых режимах, большую часть времени полностью открыта. Но ошибка есть, будем разбираться. Для начала проверяю электросхемы. Питание воздушной заслонки и блока управления вентиляторами идёт с одного предохранителя. Проверяю предохранитель — сгорел. Просто так 10А предохранитель не сгорает — скорее всего где-то коротыш — замыкание на массу. Варианта три — либо один из питаемых блоков, либо проводка, что чаще. Отсоединяю разъёмы с заслонки и с блока вентиляторов, Проверяю ток на сгоревшем предохранителе. Здесь важно как правильно измерить ток.

Самый простой и дурацкий метод — воткнуть вместо сгоревшего предохранителя новый. Сгорел — значит коротыш остался. Но если не сгорел — это ещё ни о чём не говорит. Я таким методом не пользуюсь. Второй вариант — воткнуть иглы мультиметра вместо сгоревшего предохранителя и переключить его в режим измерения тока. Так я тоже не делаю. Потому что в случае коротыша можно спалить прибор. Либо проводку, если вовремя не отключить питание. Некоторые диагносты проверяют коротыш вставив вместо предохранителя небольшую лампочку. Горит — значит одна нога на плюсе, что нормально, а вторая на массе, что есть коротыш, Неплохой метод, но я не пользуюсь, потому что лампочка греется и её не везде видно. Например, предохранители под капотом, а замыкание в салоне — пока копаешься в салоне, лампу под капотом не увидишь. Для правильной проверки тока ещё во времена УСервиса спаял небольшой переходничок — к лапкам сгоревшего предохранителя припаял петлю с колодкой под предохранитель. Раньше у меня был шикарный перекатной осциллограф с токовыми клещами и длинным-длинннным проводом. Удобно было воткнуть клещи в петлю переходника, а сам переходник с новым предохранителем вместо сгоревшего. И сразу на экране видно проходящий ток в цепи. Если при подаче питания уходит в небеса — сгорает новый предохранитель, ищу хорошее замыкание на массу. Если замыкание плавающее — удобно шевелить проводку, глядя на экран осциллографа, где провода перемыкаются — будет всплеск тока. Но Здесь осцила нет, поэтому использую обычные токовые клещи.

Итак, при отключенных потребителях тока в цепи нет — значит проводка исправна, не шевеление жгутов не реагирует. Подключаю блок управления вентиляторами — 0,3А -видно, что блок исправен. А когда подключаю воздушную заслонку, ток мгновенно выходит за максимальный предел измерения токовых клещей и предохранитель сгорает. Вот оно и решение — внутренняя неисправность воздушной заслонки. Мне становится интересно, сколько же тока пожирает мотор заслонки в момент подачи питания. Это не похоже на коротыш, скорей всего мотор просто подклинил и ток слишком высок. Ставлю предохранитель на 20А и переключаю предел измерения на клещах. Вуаля — ток 0,7А. И заслонка работает. И проходит адаптацию. И теперь даже родной 10А предохранитель не сгорает. Чудеса! Сам видел, что есть неисправность, теперь сам вижу что её нет.

Возможно, мотор заслонки отогрелся в цеху, сдвинулся с мертвой точки и теперь работает как надо. Никаким способом мне более не удалось повторно вызвать неисправность. Только спустя неделю клиент вернулся с той же ошибкой — я уже без диагностики приговорил воздушную заслонку. А так как стоит эта экологическая штука 23 000р. клиент менять её не стал, просто снял с неё разъём и заменил предохранитель. Да, CheckEngine так и будет гореть на панели приборов.

Но это ещё не все неисправности на этом автомобиле. Продолжаем ремонт. Есть ещё постоянная ошибка по датчику температуры жидкости на выходе из радиатора. Вот здесь проблемка.

Сам датчик стоит не на выходе из радиатора, а на входе в блок цилиндров. Непростым делом было добраться до разъёма датчика, так что уважаю парней, которые смогли заменить этот неудобнорасположенный датчик. Хотя этого и не требовалось. Печально, что и снятие разъёма мне не особо помогло. При замыкании между собой проводов датчика, блок управления ошибку не меняет. У него не очень удобная программа — в случае неисправности датчика он ставит вместо его показаний замещающее значение 23 Градуса. И замыкай провода, и обрывай, ничего кроме этого значения не увидишь. Значит, нужно прозванивать проводку от блока до датчика. Дело не особо приятное, муторное и грязное. Блок управления находится под жабо. Дворники снимать жутко не хочется, поэтому пройдусь по больным местам этого жгута проводов, не особо разбирая моторный отсек. Несмотря, что дизель, больное место оказывается там же, что и на других машинах — рядом с аккумулятором, где жгут переходит на левый лонжерон.

Два проводочка перетёрлись. Чтож, ремонтирую. Теперь датчик показывает реальную температуру. А так как и воздушная заслонка работает нормально, то ошибок в памяти нет. Пока. Как покажет время, на неделю заслонки хватило.

  • входная диагностика — 1000р
  • проверка проводки — 1000р
  • ремонт двух проводов — 1000р
  • неисправность по воздушной заслонке осталась. цена запчасти 23 000р, цена замены 1500р — не сделано.

Если эта статья помогла Вам, используйте уникальную возможность отблагодарить автора. Это, безусловно, его вдохновит и сподвигнет на описание интересных случаев ремонта в дальнейшем.

Если статья Вас возмутила, или есть что дополнить, пишите на , всё обсудим

OlegProService › Блог › Дроссельная заслонка на дизельных двигателях #ЭКО-ДИЗЕЛЬ

Свою тему по «эко-дизелям», если этот термин вообще применим к двигателям разработанным для работы на мазуте, я начну с Дроссельных Заслонок на дизельных двигателях.

не надо путать с «глушилками», они ставятся на дизельные моторы с целью останавливать дизельный двигатель перекрыв ему подачу воздуха, в этом случае дизель просто задыхается и останавливается более мягко. Глушилка постоянно открыта и заслонка находится в положении параллельном потоку воздуха, в момент поворота ключа в положение OFF для остановки двигателя, на управляющий соленоид подаётся сигнал он подаёт вакуум на актуатор глушилки, та поворачивается на 90 градусов и перекрывает подачу воздуха в двигатель, после остановки двигателя питание с соленоида пропадает и заслонка поворачивается в исходное положение под действием пружины актуатора. эта система в основном применяется на гражданских дизельных моторах более дорогого сегмента, то есть на одном и том же двигателе в зависимости от комплектации авто как может как быть так и отсутствовать.

Дроссельная Заслонка в том понимание в котором она есть устанавливалась на первые «эко-дизеля» в начале 90 годов на многие моторы в частности на моторы 2L-TE и 1KZ-TE, это была самая настоящая дроссельная заслонка которая дозировала подачу воздуха и в ней был бай-пасный канал и малая заслонка для реализации работы двигателя на ХХ. Малая заслонка задумывалась как очень интересный механизм у неё было 3 режима работы
1) работа двигателя на ХХ в режиме прогрева (пока ОЖ двигателя не прогреется до 50 гр.С малая заслонка на половину закрыта) и дизель получает очень малую порцию воздуха, температура в камере сгорания повышается из за очень богатой смеси, да я понимаю что это не применимо к дизельным моторам, но это именно богатая смесь. стоять с таким дизелем в сильный мороз до прогрева очень тяжело с выхлопа идёт удушающий чёрный дым, богатый углеродами (сажей) основная причина того что на этих моторах в банке глушителя лежит по 20 кг сажи именно в такой системе реализации прогрева. Замечу что дизель не имеет заметных улучшений в показателях прогрева с этой системой, именно по этому в последствии на эти моторы поставили кнопку IDEL UP которая поднимала обороты ХХ до 1200-1500 об.

2) двигатель прогрет на температуру 50 гр С и выше. малая заслонка полностью открыта, двигатель получает на ХХ расчётную порцию свежего воздуха.
3) двигатель требуется остановить, ключ поворачивается в положение OFF, малая заслонка перекрывается, дизель плавно останавливается. через несколько секунд малая заслонка возвращается в исходное положение (положение полностью открытой)

сама идея установки на дизельный мотор была дурной как и все экологические идеи. я не хочу слышать теории о том что «дроссельная заслонка спасёт от разноса» её тупо откроет в продольное положение, кто знаком с силой вакуума (а вакуума любой поршневой мотор создаёт очень много в впускном коллекторе) прекрасно знает что при разносе дизель может втянуть фуфайку от самого воздушного фильтра, протянуть её через весь впуск и зажевать в турбину или дотянуть ей до клапанов. Кто пробовал подставить ладонь в впуск дизелю знает что он на ХХ может присосать так что останется синяк на ладони.
сама идея ДЗ на дизеле — дать дизелю только то количество воздуха которое ему нужно, что это он потребляет его столько сколько хочет? давайте ему лимитируем воздух. очень интересная идея учитывая что на эти моторы не ставился ДМРВ и Лямбда-зондов и посчитать сколько воздуха ему нужно никто и не мог. Да и сама идея противоречит догматам дизельного двигателя, где сказано, «дизельный двигатель потребляет столько воздуха сколько может втянуть или сколько ему может дать турбина повышение оборотов и мощности происходит за счёт увеличения количества подаваемого топлива»
а вот негативный эффект от установки ДЗ есть, он очень ощутимый. Какой гений придумал ставить ДЗ после турбины? он не знал что ДЗ будет сопротивляться потоку нагнетаемого воздуха и мотор будет выходить на рабочее давление наддува на более высоких оборотах, а в некоторых случаях не будет выходить на наддув совсем. Те кто уже удалил ДЗ на двигателях 2L-TE или те у кого стоит стрелочный индикатор наддува — уже заметили что мотор стал выходить на режим наддува на 1600 оборотах под нагрузкой а не 2100 как ранее, дизель стал более резвый в нижнем диапазоне оборотов, и не странно он впервые стал дышать свободно, так как ему и положено.

теперь о том как удалить дроссельную заслонку.

1)для начала мы снимаем впускной тракт от турбины до дроссельной заслонки, закрываем отверстие впускного таркта тампоном из такани чтобы предостеречь от попадания постороних предметов или мусора (нам потребуются новые прокладки ДЗ или герметик Erling, Permtex, Don-Deal) я предпочитаю герметик или паронитовые прокладки для наддувных дизелей (в этом случае гораздо реже образуются запотевания на стыках)
2) снимаем разъем проводки с ДПДЗ и соленоида управления актуатором малой ДЗ(соленоид снимаем и оставляем про запас, аналогичные соленоиды управляют подключением передней левой полуоси на системе ADD)
3) снимаем вакуумные шланги с малой заслонки (если мы удаляем ЕГР или он уже удалён снимаем всю вакуумную магистраль до тройника на вакуумном насосе где разветвляется на управление ADD и Экологию) если мы удаляем только заслонки — то нужно закольцевать или заглушить вакуумные трубки подходяшеё трубочкой или болтом. НО Я НАСТОЯТЕЛЬНО РЕКОМЕНДУЮ УДАЛИТЬ ВСЁ РАЗОМ, ХОТЯ БЫ ОТКЛЮЧИТЬ ВАКУУМ С ЕГР
4) снимаем актуатор малой заслонки, отцепляем его от тяги малой заслонки.
5)снимаем троссы педали газа и тросс АКПП с ДЗ. (внимательно запомните где и как лежали тросы, часто люди путают их положение) сами регулировочные гайки я не ослабляю, я снимаю тросы вместе с кронштейном и отвожу в сторону.
6) снимаем 2 шланга подогрева дроссельной заслонки.(ВНИМАНИЕ! ДОЖДИТЕСЬ ОХЛАЖДЕНИЯ ДВИГАТЕЛЯ И СБРОСЬТЕ ДАВЛЕНИЕ В СИСТЕМЕ ОХЛАЖДЕНИЯ ОТКРЫВ ПРОБКУ НА РАДИАТОРЕ ИЛИ КОРПУСЕ ТЕРМОСТАТА) и временно глушим шланги болтами м10 или м12 (количество пролившейся ОЖ будет не значительным если действовать оперативно и быть подготовленным) эту операцию можно пропустить и просто аккуратно перевернуть заслонку слегка перегнув шланги
7) внутри дроссельной заслонки мы видим ось большой заслонки и саму заслонку закрепленную 2 винтами под отвёртку. Ось нам нужно оставить, так как на ней заклеалён элемент реостата ДПДЗ, а вот саму заслонку нам нужно удалить, но самое неприятное что винты которыми крептся заслонка к оси расклёпаны с стороны резьбы, и их не возможно вывернуть, только отсверлить. сталь там не крепкая и достаточно простого сверла с шуруповёрта.
8) удалив большую заслонку, убрав весь мусор и очистив всё мы приступаем к сборке в обратной последовательности, болты и гайки крепления ДЗ затягиваются с моментом 21 Nm. малая заслонка остаётся жить в корпусе, она теперь не участвует в работе двигателя.

Читайте также  Установка топливного насоса на двигатель д 245

некоторые люди замечают акустический эффект схожий с глухим бубнящим звуком в впускном тракте после удаления ДЗ. но это чаще всего связано с неверным зазором в клапанном механизме или свидетельствует о плохом контакте впускного клапана с седлом. (в такте сжатия и расширения часть газов прорывается через впускные клапаны обратно в впускной коллектор и создаёт этот эффект в ресивере с надписью EFI-DIESEL после турбины, на свеже-перебранном дизеле с удалённой заслонкой этот эффект не наблюдается, и в любом случае это не повод для беспокойства на дизельном двигателе многие современные дизеля начинают бубнить в впуск уже на незначительных пробегах, и этот акустический эффект хорошо заметен.

удаляйте заслонки, радуйте свой дизель свежим воздухом и радуйтесь сами приросту мощности на низах.

В СЛЕДУЮЩЕЙ ЧАСТИ БЛОГА Я РАССКАЖУ О EGR (ЕГР)
ВСЕ ВОЗНИКШИЕ ВОПРОСЫ МОЖЕТЕ ЗАДАВАТЬ В КОММЕНТАРИЯХ ИЛИ У МАНЯ НА СТРАНИЦЕ В ВК

Устройство и принцип работы дроссельной заслонки

Дроссельная заслонка – это одна из важнейших частей системы впуска двигателя внутреннего сгорания. В автомобиле она расположена между впускным коллектором и воздушным фильтром. В дизельных двигателях дроссель не нужен, однако, его все равно устанавливают на современных моторах на случай аварийной работы. Аналогичная ситуация и с бензиновыми двигателями при наличии в них системы управления подъемом клапанов. Основная функция дроссельной заслонки – подача и регулирование потока воздуха, необходимого для образования топливовоздушной смеси. Таким образом, от корректной работы заслонки зависит стабильность режимов работы двигателя, уровень расхода топлива и характеристики автомобиля в целом.

  1. Устройство дросселя
  2. Виды и режимы работы дроссельной заслонки
  3. Устройство механического привода
  4. Принцип работы электронного привода
  5. Обслуживание и ремонт дросселя

Устройство дросселя

С практической стороны дроссельная заслонка является перепускным клапаном. В открытом положении давление в системе впуска равно атмосферному. По мере закрытия оно уменьшается, приближаясь к значению вакуума (это происходит, поскольку двигатель фактически работает как насос). Именно по этой причине вакуумный усилитель тормозов соединен с впускным коллектором. Конструктивно сама заслонка является пластиной круглой формы, способной поворачиваться на 90 градусов. Один такой оборот представляет собой цикл от полного открытия и до закрытия клапана.

Устройство дроссельной заслонки

Блок (модуль) дроссельной заслонки включает в себя следующие элементы:

  • Корпус, оснащенный несколькими патрубками. Они соединены с системами вентиляции, улавливания топливных паров и охлаждающей жидкости (для обогрева заслонки).
  • Привод, приводящий в движение клапан от нажатия на педаль газа водителем.
  • Датчики положения, или потенциометры. Они производят замер угла открытия дроссельной заслонки и подают сигнал в блок управления двигателем. В современных системах устанавливается два датчика контроля положения дросселя, которые могут быть со скользящим контактом (потенциометры) или магниторезистивные (бесконтактные).
  • Регулятор холостого хода. Он необходим для поддержания заданной частоты вращения коленвала в закрытом режиме. То есть обеспечивается минимальный угол открытия заслонки, когда педаль газа не нажата.

Виды и режимы работы дроссельной заслонки

Тип привода дросселя определяет ее конструкцию, режим работы и управление. Он может быть механический или электрический (электронный).

Устройство механического привода

Старые и бюджетные модели автомобилей имеют механический привод клапана, в котором педаль газа напрямую соединена с перепускным клапаном при помощи специального троса. Состоит механический привод для дроссельной заслонки из следующих элементов:

  • акселератор (педаль газа);
  • тяги и поворотные рычаги;
  • стальной трос.

Нажатие на педаль газа приводит в движение механическую систему из рычагов, тяг и троса, что заставляет заслонку совершить поворот (раскрытие). В результате в систему начинает поступать воздух и формируется топливовоздушная смесь. Чем больше воздуха будет подано, тем больше поступит топлива и, соответственно, увеличится скорость. Когда акселератор находится в неактивном положении, заслонка возвращается в закрытое состояние. Помимо основного режима, механические системы могут включать и ручное управление положением дросселя при помощи специальной ручки.

Принцип работы электронного привода

Второй и более современный тип заслонок – электронный дроссель (с электрическим приводом и электронным управлением). Его приоритетными отличиями являются:

  • Отсутствие прямого механического взаимодействия между педалью и заслонкой. Вместо нее, используется электронное управление, что также позволяет изменять крутящий момент двигателя без необходимости нажатия на педаль.
  • Холостой ход двигателя регулируется перемещением дросселя автоматически.

Электронная система включает в себя:

  • датчики положения педали газа и дроссельной заслонки;
  • электронный блок управления двигателем (ЭБУ);
  • электрический привод.

Система управления электронной дроссельной заслонкой также принимает во внимание сигналы от коробки передач, системы управления климатом, датчика положения педали тормоза, круиз-контроля.

При нажатии на акселератор датчик положения педали газа, состоящий из двух независимых потенциометров, изменяет сопротивление в цепи, что является сигналом для электронного блока управления. Последний передает соответствующую команду на электропривод (моторчик) и поворачивает клапан дроссельной заслонки. Ее положение, в свою очередь, контролируется соответствующими датчиками. Они посылают ответную информацию о новой позиции клапана в ЭБУ.

Датчик текущего положения дроссельной заслонки представляет собой потенциометр с разнонаправленными сигналами и общим сопротивлением 8 кОм. Он располагается на ее корпусе и реагирует на вращение оси, преобразуя угол открытия клапана в напряжение постоянного тока.

В закрытом положении клапана напряжение будет около 0,7В, а в полностью открытом около 4В. Этот сигнал получает контроллер, узнавая таким образом о проценте открытия дроссельной заслонки. Исходя из этого, рассчитывается количество подаваемого топлива.

Графики выходных сигналов датчиков положения заслонки являются разнонаправленными. За управляющий сигнал берется разность между двумя значениями. Такой подход помогает справиться с возможными помехами.

Обслуживание и ремонт дросселя

При неисправности дросселя его модуль полностью меняется, но в некоторых случаях достаточно сделать корректировку (адаптацию) или чистку. Так, для более точной работы систем с электрическим приводом необходимо проводить адаптацию или обучение дроссельной заслонки. Такая процедура предполагает занесение в память контроллера данных о крайних положениях клапана (открытия и закрытия).

В обязательном порядке адаптация для дроссельной заслонки проводится в следующих случаях:

  • При замене или перенастройке электронного блока управления двигателя автомобиля.
  • При замене заслонки.
  • Если отмечается нестабильная работа двигателя в режиме холостого хода.

Проводится обучение блока дроссельной заслонки на СТО при помощи специального оборудования (сканеров). Непрофессиональное вмешательство может привести к некорректной адаптации и ухудшению эксплуатационных характеристик автомобиля.

Если проблемы возникают на стороне датчика, на приборной панели загорается лампочка, уведомляющая о неполадках. Это может свидетельствовать как о неправильной настройке, так и об обрыве контактов. Еще одной частой неисправностью является подсос воздуха, который можно диагностировать по резкому увеличению оборотов двигателя.

Несмотря на простоту конструкции, диагностику и ремонт дроссельного клапана лучше всего доверить опытному специалисту. Это обеспечит экономную, комфортную, а главное, безопасную эксплуатацию автомобиля и повысит срок службы двигателя.

Электронная дроссельная заслонка: как она устроена, и как её ремонтировать?

Тренд автомобильного инжиниринга всех последних лет – планомерное отстранение водителя от непосредственного управления машиной. Пока, слава богу, мы не дошли массово до потери жесткой связи наших рук и ног с поворачивающимися колесами и тормозами, но к тому все явно идет… Как минимум, ни один автомобиль в наши дни уже не выпускается без электронной дроссельной заслонки, при которой мы не отдаем прямую команду дросселю «больше воздуха!» правой ногой через тросик, а высказываем пожелание блоку управления двигателем, который уже сам отправляет команду на заслонку. Хорошо это или плохо, и как с этим жить?

История вопроса

П ринято считать, что так называемый E-газ – это технология последнего примерно десятилетия. В чистом виде – да, но интегрированный электропривод в дроссельных заслонках появился гораздо раньше – еще в 80-х. В те годы на оси заслонки с одной стороны располагался сектор газа, связанный с педалью акселератора классическим тросиком (да-да, «колесико», которое приводится в движение тросиком от педали, называется «сектором газа»!), а с другой стороны ось заслонки соединялась через шестеренчатую передачу с небольшим электромотором.

Собственно, на поведение машины при движении моторчик влияния не оказывал – связь с ногой водителя была олдскульная, механическая и четкая: как надавишь, так и поедешь! А вступал в работу электромотор только в режиме холостого хода, корректируя степенью приоткрытия заслонки обороты при прогреве и после прогрева, а также чуть добавляя газку при включении мощных потребителей электроэнергии и крутящего момента – кондиционера летом, ГУРа на морозе, разных обогревов и т.п. Чуть позже функции моторчика в дросселе расширились – при практически неизменной конструкции добавилось электронных команд: он стал управлять не только оборотами холостого хода, но и оборотами в движении – при включении круиз-контроля и при активации антипробуксовочной системы.

Сейчас же все достигло «апофигея технологичности» – механическая связь заслонки с педалью газа исчезла в принципе, и все команды – как от ноги водителя, так и от сервисных систем – дроссель получает лишь при посредничестве блока управления двигателем. Причин тому – три:

  • Экологические требования;
  • Рост экономии топлива;
  • Удобство в реализации множества современных функций автомобиля.

Электронный дроссель в наши дни

Итак, прямая связь дроссельной заслонки с педалью упразднена полностью и окончательно. Как я уже говорил, нажатием на педаль мы отправляем сигнал в блок управления, а тот в свою очередь анализирует обстановку и множество параметров, а затем отдает команду на подачу воздуха. При этом надо сказать, что за добрый десяток лет развития тандема электронной педали газа и электронного дросселя в его современном понимании система благополучно переросла ряд детских болезней – как чисто физических, так и софтовых.

Читайте также  Как померить давление масла в двигателе?

Изнашивающиеся скользящие контакты датчиков положения заслонки вытеснила бесконтактная индуктивная связь, появилось множество новых функций – не настолько явных, чтобы занять строчку в техническом описании автомобиля, но в комплексе достаточно важных.

Например, ход педали газа стал нелинейным, что позволило лучше контролировать автомобиль во время начала движения: при мощном моторе (где заслонка имеет большой диаметр) исчез риск избыточно резко рвануться вперед при легком касании педали – электронный дроссель в первой четверти хода педали газа реагирует намеренно вяло.

E-газ позволяет наиболее оптимально провести разгон на авто с турбированным двигателем, в значительной мере борясь с турбоямой и обеспечивая более ровное ускорение с низов. Е-газ поможет и при режиме «педаль в пол», когда в случае классической тросовой заслонки первые мгновения идет неоптимальное сгорание смеси, и теряются секунды на разгоне. Конечно же, нельзя не упомянуть эффективную систему автоматического управления тягой мотора для борьбы со сносами и проскальзываниями ведущих колес.

При этом, правда, нужно отметить, что поведение электронного дросселя на бюджетных машинах по-прежнему серьезно отличается от среднеценовых и, тем более, премиальных автомобилей. В «бюджетках» E-газ, к сожалению, излишне туповат, задумчив и не способствует получению истинного удовольствия от драйва.

Да еще порой и на безопасность влияет отрицательно – дроссель с неоптимальным управляющим программным обеспечением реагирует на нажатие педали с задержкой, выдавая момент на колесах тогда, когда уже поздно. При отсутствии систем стабилизации зимой на скользком покрытии и в повороте такая реакция машины способна свести на нет ваши традиционные навыки зимнего вождения и создать аварийную ситуацию.

Простота и сложность электронного дросселя

Обычно внедрение электроники сопровождается невероятным усложнением конструкции. В случае с дросселем все с точностью до наоборот! Вдумчиво изучив его, можно обнаружить, что он невероятно прост и лишен ряда хитрых технических решений, имевшихся прежде у классических дросселей с тросовым приводом. А уж старый добрый двухкамерный карбюратор по сравнению с E-дросселем – и вовсе сложнейший и дорогущий в производстве прибор эпохи «стимпанк»…

Во-первых, конечно же, E-дроссель не нуждается в регуляторе холостого хода – клапане подачи воздуха по тоненькому каналу, управляемому шаговым двигателем, который склонен к загрязнению картерными газами и нестабильной работе. В случае электронного дросселя клапан регулировки холостого хода исчезает – ХХ обеспечивается приоткрытием основной заслонки – ведь она и так электроуправляемая, а стало быть, прекрасно справляется с регулировкой оборотов, подстраиваясь под включенные потребители, температуру наружного воздуха и антифриза, и т.п.

Еще в систему холостого хода при классическом дросселе часто входили дополнительные байпасные воздушные каналы в обход заслонки, также весьма склонные к засорению. Эти каналы открывались не плавно, а по принципу «вкл/выкл», внешними электроклапанами – к примеру, для компенсации нагрузки на двигатель при включении кондиционера. В электронном дросселе это все тоже оказалось ненужным – компенсация просадки оборотов делается опять же самой дроссельной заслонкой.

Также у классического дросселя имелся подогрев антифризом от системы охлаждения, поскольку все вышеупомянутые тоненькие каналы в холодное время боялись обмерзания. В электронном дросселе, особенно если монтируется он на пластиковом впускном коллекторе, нужды в подогреве часто нет – штуцеры подвода и отвода антифриза из него исчезают.

Иначе говоря, электронный дроссель взял на себя сразу несколько функций, до предела упростив свою механическую часть.

Да, по «механике» ломаться стало практически нечему – настолько все там просто и примитивно: простейший электромоторчик, который через пару пластиковых, но достаточно крепких шестеренок связан с осью заслонки, да возвратная пружина на той же оси.

Собственно, даже вопрос периодической чистки дросселя заметно снизил свою актуальность после избавления от системы узких байпасных каналов. Однако существенно усложнилась электронная часть, преподносящая порой сюрпризы – как объяснимые, так и совершенно загадочные и беспричинные.

Проблема заключается в том, что электронная плата дросселя, являющаяся, по сути, только сдвоенным датчиком, отслеживающим положение и динамику открытия заслонки, зачастую неремонтопригодна и отсутствует в продаже. Если электродвигатель при подаче диагностических 12 вольт ровно жужжит, редукторные шестеренки не имеют повреждений и заеданий, а в проводке от заслонки к ЭБУ нет плохих контактов, может потребоваться замена дроссельной заслонки в сборе. Увы.

И вот тут-то многие могут столкнуться с неприятным сюрпризом. На Лада Гранта этот узел в сборе стоит 5 000 рублей, что немало, но в целом подъемно, а на Volkswagen Polo Sedan – 25 000 рублей… Такая сумма способна пробить серьезную дыру в бюджете, а расстройства добавит тот факт, что обе детали, за 5 и за 25 тысяч рублей, технически почти идентичны, но конструктивно и программно несовместимы.

Что делают «jetter», «шпора» и «бустер педали газа»?

Говоря об электронном дросселе, этот класс устройств нельзя не упомянуть. Под такими названиями известен популярный гаджет для машин с E-газом, который, по словам производителей, «дает рост динамике и скорости». «Джеттер» – небольшая коробочка, включающаяся в цепь между педалью газа и блоком управления двигателем и искажающая сигнал педали так, чтобы заставить ЭБУ думать, что «тапка в полу», когда вы лишь слегка коснулись акселератора.

На самом деле, ни скорости, ни динамики эти гаджеты не добавляют и добавить не могут. Они просто меняют электромеханическую характеристику педали акселератора. Характеристика педали всегда нелинейна – изначально электронная педаль чаще всего настроена так, чтобы в первой половине хода быть малоотзывчивой, выдавая четверть мощности двигателя, а за оставшуюся половину выдавать остальные три четверти. Это, безусловно, весьма упрощенное описание, цифры тоже условны, но суть именно такова. «Джеттер» же меняет заводскую характеристику «наизнанку» – педаль начинает выдавать почти всю мощность двигателя на первой половине хода, субъективно делая машину «резкой». Некоторый эффект действительно ощутим, особенно при первом сравнении, но надо понимать, что ничего такого, чего бы нельзя было сделать ногой без применения электронной «примочки», не происходит.

Собственно говоря, программные аналоги «джеттера» давно имеются во многих автомобилях высокого класса. Там это называется переключением режимов вождения, под которыми понимается управление настройками двигателя, КПП и иногда – шасси, если в нем имеются управляемые амортизаторы. Смена режима «нормал» на «спорт» (названия могут быть иными в авто разных марок и моделей) включает в себя наряду с изменением массы других настроек и коррекцию характеристики педали газа, как это делает и «джеттер».

Заслонка изнутри

Перед нами дроссельная заслонка Volkswagen Polo Sedan. Машина приехала на сервис с жалобой на неадекватное поведение педали газа, горящий «чек» и двигатель, явно не развивающий положенную мощность. Диагностика выявила неисправность дроссельной заслонки, которая и была заменена по гарантии. Никаких более глубоких причин выхода её из строя дилерский сервис искать не стал, поскольку подобные процедуры не предусмотрены регламентом. Пользуясь случаем, на примере «приговоренной» заслонки изучим её устройство и попробуем обнаружить неисправность. Ведь гарантия сохранилась не у всех!

Снаружи на дросселе видны четыре отверстия, через которые болты притягивают дроссель к коллектору, небольшой зазор в закрытом состоянии для поступления в цилиндры воздуха в режиме холостого хода, а также логотип итальянского производителя Magneti Marelli. Кстати, одной из старейших в мире компаний, производящих автомобильную электронику.

Как работает дроссельная заслонка на дизельном двигателе?

путаете принцип действия бензинового и дизельного двигателя.
входное количество воздуха не имеет значения.имеет значение «степень сжатия» ЦПГ.и то только на запуск мотора,а топливоподача в мм3 расчетно_неизменная.

200?’200px’:»+(this.scrollHeight+5)+’px’);»> В дизеле без дроссельной заслонки воздуха попадет столько, сколько возможно, с поправкой на волновые явления во впускном и выпускном трактах.

путаете принцип действия бензинового и дизельного двигателя.
входное количество воздуха не имеет значения.имеет значение «степень сжатия» ЦПГ.и то только на запуск мотора,а топливоподача в мм3 расчетно_неизменная.

Как раз ничего не путаю, разговор как раз о том, что в дизеле регулирование происходит «от обратного» то есть не по цикловому наполнению а по подаче, из за этого количество воздуха у нас «от фонаря», с большим переизбытком.
Раньше воздухом не заморачивались, так как не было возможности измерить его реальное количество.
А ответ все же есть, — «правильное» соотношение воздух/топливо для дизеля 14,6 частей воздуха на 1 топлива. Вспомним, что для бензинового это 14,7

Поэтому дожились до того, что во многих современных дизелях ЕСТЬ датчик кислорода, причем широкополосный, о шести проводах. И цена этой игрушке за 200уе.

Так что правильно, — общее состояние проверяем по дымомеру и температуре газов, все правильно, а регулирование в реальном режиме времени производим по датчику избыточного кислорода в выхлопных газах.
Но и там, где дк нет, скорее всего разработчики постарались измерить поведение наполняемости цилиндров в зависимости от режима работы двигателя и скорректировать ее, заложив в программу управления поведение дроссельной заслонки.

Итог, в отличии от бензинового двигателя мы не можем для регулирования стехиометрии изменять подачу топлива, так как вызовем смещение режимной точки (вроде так называется, извините, я троечник), поэтому приходится регулировать количество воздуха.

200?’200px’:»+(this.scrollHeight+5)+’px’);»> Вспомним, что для бензинового это 14,7. Чёт я сумлеваюсь, нащёт соотнашения — такого , Во первых чем современней ДВС (к примеру) с насос — форсунками электронными , или с непосредственным впрыском топлива , а то и с впрыском высокого давления , ну и к примеру ДВС на сверх обеднённой смеси, так тама доходит (в серийных тачанках. ) до 46 литров воздуха на литр топлива — ВОТ.
И по исследовательскому методу даже на 06 жигуле — на холодном пуске к литру топлива даётся 16 литров воздуха , — доводя после прогрева до 17,5 литров воздуха к литру топлива.
Не забыть ещё программирование некоторых машинок для условий разряженного (к примеру горного) воздуха, с достаточной высотой над уровнем моря. а так же ДВС Работающих в особых условиях (дизельные подлодки, ну и т.д.)

]по датчику избыточного кислорода в выхлопных газах.

Странный у нашего народа менталитет, — если из выпускного коллектора торчит что-то, ему непонятное и до сели неизвестное, то значит оно от дьявола! Оно мешает работе двигателя и подлежит немедленной анафеме!

Блин, ну не мешают они работать двигателю, если-б мешали их бы туда не поставили.

Просто наш человек гордится тем, что из сложнейшего, близкого к совершенству технического устройства выкидывает все, что ему кажется ненужным и необязательным, превращает машину ДТ75 и радостно катается на его останках, будучи уверенным, что поступил правильно.

Если все ремонтировать вовремя, ВОВРЕМЯ менять неисправные детали, не дожидаться пока забьет DPF, лить масло, которое предписано заводом (CF-4), то ничто ничему мешать не будет, а только помогать.
То же касается своевременной замены ФТО, использования оригинальных ФТО. Наш народ начинает лепить туда дополнительные фильтры, создавая дополнительное разрежение на входе ТНВД, приводя к преждевременному износу.
«Проснулся утром Ваня, смотрит, а у него хвост вырос. Блин, никто не объяснил ему зачем он нужен, а хвост есть! Непорядок, подумал Ваня. Может этот хвост был дарован ему эволюцией для связи с другими мирами или космосом, может быть он мог спасти его от конца света, он не знал, но по строгим рекомендациям Феди, у которого хвоста не выросло, хвост себе к вечеру он все же отрубил.»

Добавлено (18 Дек 2011, 14:08)
———————————————
Про 14, 7 для бензина и 14,6 для дизеля спорить не моги, так как это НЕОСПОРИМЫЕ законы химии, и связаны они с молярными массами и валентностями элементов присутствующих в этих смесях.
Про современные двигатели, — это отдельный разговор. — какие меры конструкторы предприняли для того, чтобы заставить работать двигатель на более бедных смесях.
Для бензинового двигателя без GDI 17:1 это очень экономичный режим, применимый только на частичных нагрузках при равномерном движении. На холостых и при увеличении нагрузки работать оно не будет.
А для работы на разных высотах есть такая вещь, — барокоррекция.

Читайте также  Где взять плюс после запуска двигателя?

А Араон Байфайзер, Кристофер Моту, Брекхем Флиспер , и метр Фитипальди — наверное уроды — кстати вместе с Джемми Маклаудером — величайшим мотористом . Кто обратил внимание общества впервые на корпорации — ведущие договорную игру с людьми не имеющими представление о работе ДВС — но имеющие право давления на любую авто корпорацию для своих политических амбиций. И в том числе давивших практически все начинания по изменению принципов контроля за ДВС на авто формулы 1 .
Если кого устраивает ездить на современном, систематически глохнущем, требующим особого обслуживания, дорогого -заметьте. То мне не интересен ДВС который нуно капиталить на станции ТО за пол цены авто . Где меня же обвинят в не правильной эксплуатации. через 23 тысячи километров эксплуатации. Я склонен приобретать надёжную старую технику Тойоты. Обувь фирмы САНЧО , Водку Курант, Технику Сони, Белых ЖЕНЩИН, и жаль что нет денег на свой самолёт ДУГЛАС. Все могут с кайфом продолжить список. Кстати и ДТ-75 мне бы не помешал ,- тута в Карелии обчался с дедком 77 годков бывшем председателем колхоза им. Крупской , он не бухая помнит 2 отказа завестись у этой техники , за 31 год работы. :punchl: Ну нравится тебе кормить дармоедов делающих дорогие головки системно выходящие из строя по причине неравномерного прогрева основного металла, — корми,но других не ЗАСТАВЛЯЙ и не УЧИ . Я ж тебя не прошу на мои порносайты приходить и делить со мной радость . Во обозлили меня , интернет профаны ни разу не приложившие рук своих к тщательному ремонту ДВС , а токма покупающие за бабло услуги рекламных компаний и типа супер страховку с выездным мастером на место парковки авто (Майбах к примеру), сплошь понты дешёвые, Ну и приедет за тобой френч-вертолёт. и ми-8 вытащет твой хаммер из простого песка, где 10 минут назад 33 уазика проехали . Ну и протечёт за 2 минуты вода в моторчик твоего супер полурамного Ренж Ровера с слежением (а теперь отсутствием оного) за уровнем высоты подвески. И ремонту гарантийному это не подлежит. Максай. И Сгорят все твои вискомуфты. А мимо проедет ТЛК — 70 и пыхнет переобогащённой смесью, но лишь из за эмоционального нажатия на газульку счастливого лузера — послушавшего Папку. т
Пользую Пыжик 307 юниверсал , бак на 890 км. по трассе , а Пыжик не часто пользует меня 🙂

Дроссельная заслонка

На современных авто питание силовой установки осуществляется двумя системами – впрыска и впуска. Первая из них отвечает за подачу топлива, в задачу второй входит обеспечение поступления воздуха в цилиндры.

Назначение, основные конструктивные элементы

Несмотря на то, что подачей воздуха «заведует» целая система, конструктивно она очень проста и основным ее элементом выступает дроссельный узел (многие по старинке называют его дроссельной заслонкой). И даже этот элемент имеет несложную конструкцию.

Принцип работы дроссельной заслонки остался идентичным еще со времен карбюраторных двигателей. Она перекрывает основной воздушный канал, благодаря чему и регулируется количество подаваемого в цилиндры воздуха. Но если эта заслонка раннее входила в конструкцию карбюратора, то в инжекторных двигателях она является полностью отдельным узлом.

Помимо основной задачи – дозировки воздуха для нормального функционирования силового агрегата на любом режиме, эта заслонка также отвечает за поддержание требуемых оборотов коленвала на холостом ходу (ХХ), причем с разной нагрузкой на мотор. Участвует она и в функционировании усилителя тормозной системы.

Устройство дроссельной заслонки – очень простое. Основными ее конструктивными составляющими являются:

  1. Корпус
  2. Заслонка с осью
  3. Механизм привода

Механический дроссельный узел

Дроссели разных типов также могут включать ряд дополнительных элементов – датчики, байпасные каналы, каналы подогрева и т. д. Более подробно конструктивные особенности дроссельных заслонок, применяемых на авто, рассмотрим ниже.

Устанавливается дроссельная заслонка в воздуховоде между фильтрующим элементом и коллектором двигателя. Доступ к этому узлу ничем не затруднен, поэтому при проведении обслуживающих работ или замене добраться до него и демонтировать с авто несложно.

Типы узлов

Как уже отмечено, существуют разные виды дроссельной заслонки. Всего их три:

  1. С механическим приводом
  2. Электромеханический
  3. Электронный

Именно в таком порядке и развивалась конструкция этого элемента системы впуска. Каждый из существующих видов имеет свои конструктивные особенности. Примечательно, что с развитием технологий устройство узла не осложнялось, а наоборот – становилось проще, но с некоторыми нюансами.

Заслонка с механическим приводом. Конструкция, особенности

Начнем с заслонки с механическим приводом. Этот тип детали появился с началом установки инжекторной системы питания на автомобили. Основная его особенность заключается в том, что заслонкой водитель управляет самостоятельно при помощи тросового привода, соединяющего педаль акселератора с сектором газа, соединенного с осью заслонки.

Конструкция такого узла полностью позаимствована с карбюраторной системы, разница лишь в том, что заслонка – отдельный элемент.

В конструкцию этого узла дополнительно входят датчик положения (угла открытия заслонки), регулятор холостого хода (ХХ), байпасные каналы, система подогрева.

Дроссельный узел с механическим приводом

В целом, датчик положения дросселя присутствует во всех типах узлов. В его задачу входит определение угла открытия, что дает возможность электронному блоку управления инжектором определить количество подаваемого в камеры сгорания воздуха и на основе этого откорректировать подачу топлива.

Ранее использовался датчик потенциометрического типа, в котором определение угла открытия осуществлялось за счет изменения сопротивления. Сейчас обычно применяются магниторезистивные датчики, которые являются более надежными, поскольку в них отсутствуют контактные пары, подверженные износу.

Датчик положения дроссельной заслонки потенциометрического типа

Регулятор ХХ в механических дросселях представляет собой отдельный канал, идущий в обход основного. Этот канал оснащается электроклапаном, корректирующим поступление воздуха в зависимости от условий функционирования двигателя на ХХ.

Устройство регулятора холостого хода

Суть его работы такова – на ХХ заслонка полностью закрыта, но для работы мотора требуется воздух, он и подается по отдельному каналу. При этом ЭБУ определяет обороты коленвала, на основе чего регулирует степень открытия этого канала электроклапаном, чтобы поддерживать заданные обороты.

Байпасные каналы работают по тому же принципу, что и регулятор. Но в их задачу входит поддержание оборотов силовой установки при создании нагрузки на холостом ходу. К примеру, при включении климат-системы, нагрузка на мотор повышается, из-за чего обороты падают. Если регулятор не способен обеспечить мотор необходимым количеством воздуха, то задействуются байпасные каналы.

Но эти дополнительные каналы имеют существенный недостаток – сечение их небольшое, поэтому возможно их засорение и обледенение. Для борьбы с последним, дроссельная заслонка подключается к системе охлаждения. То есть, по каналам в корпусе циркулирует охлаждающая жидкость, отогревая каналы.

Компьютерная модель каналов в дроссельной заслонке

Основным недостатком механического дроссельного узла является наличие погрешности при приготовлении топливовоздушной смеси, что сказывается на экономичности двигателя и выходе мощности. Все из-за того, что ЭБУ не управляет заслонкой, на него лишь подается информация об угле открытия. Поэтому при резких изменения положения дросселя блок управления не всегда успевает «подстроиться» под изменившиеся условия, что и приводит к перерасходу топлива.

Электромеханическая дроссельная заслонка

Следующим этапом развития дроссельный заслонок стало появление электромеханического типа. Механизм управления у него остался прежний – тросовый. Но в этом узле отсутствуют какие-либо дополнительные каналы за ненадобностью. Вместо всего этого в конструкцию добавили электронный механизм частичного управления заслонкой, управляемый ЭБУ.

Конструктивно этот механизм включает в себя обычный электромотор с редуктором, который соединен с осью заслонки.

Работает этот узел так: после запуска двигателя, блок управления для установления требуемых оборотов холостого хода рассчитывает количество подаваемого воздуха и приоткрывает заслонку на нужный угол. То есть, блок управления в таком типе узла получил возможность регулировать работу двигателя на холостых оборотах. На остальных же режимах функционирования силовой установки дросселем управляет сам водитель.

Использование механизма частичного управления позволило упростить конструкцию самого дроссельного узла, но не устранило основной недостаток – погрешности в смесеобразовании. Его в заслонке такой конструкции нет только на холостом ходу.

Электронная заслонка

Последний тип – электронный, внедряется на автомобили все больше. Его основная особенность заключается в отсутствии прямого взаимодействия педали акселератора с осью заслонки. Механизм управления в такой конструкции уже полностью электрический. В нем используется все тот же электродвигатель с редуктором, связанный с осью, и управляемый ЭБУ. Но открытием заслонки блок управления «заведует» уже на всех режимах. В конструкцию дополнительно добавили еще один датчик – положения педали акселератора.

Элементы электронной дроссельной заслонки

В процессе работы блок управления использует информацию не только с датчиков положения заслонки и педали акселератора. В учет берутся также сигналы, поступающие со следящих устройств автоматических трансмиссий, тормозной системы, климатического оборудования, круиз-контроля.

Вся поступающая информация с датчиков обрабатывается блоком и на ее основе устанавливается оптимальный угол открытия заслонки. То есть, электронная система полностью контролирует работу системы впуска. Это позволило устранить погрешности в смесеобразовании. На любом режиме работы силовой установки в цилиндры будет подаваться точное количество воздуха.

Но и без недостатков у этой системы не обошлось. Причем их чуть больше, чем в других двух видах. Первая из них заключается в том, что заслонка открывается при помощи электродвигателя. Любые, даже незначительные неисправности составляющих привода, приводят к нарушению работы узла, что сказывается на функционировании двигателя. В тросовых механизмах управления такой проблемы нет.

Второй недостаток – более существенный, но касается он по большей части бюджетных автомобилей. И сводится он к тому, что из-за не очень хорошо проработанного программного обеспечения дроссель может работать с запозданием. То есть, после нажатия на педаль акселератора ЭБУ требуется некоторое время на сбор и обработку информации, после чего он подает сигнал на электродвигатель механизма управления дросселем.

Основная причина задержки от нажатия на электронную педаль газа до реакции двигателя — более дешевые электронные комплектующие и не оптимизированное программное обеспечение.

В обычных условиях этот недостаток особо не заметен, но при определенных условиях такая работа может привести к неприятным последствиям. К примеру, при начале движения на скользком участке дороги иногда возникает потребность быстрой смены режима работы мотора («поиграться педалью»), то есть, в таких условиях нужен быстрый «отклик» мотора на действия водителя. Существующая же задержка в срабатывании дросселя может привести к осложнению в управлении автомобилем, поскольку водитель «не чувствует» двигатель.

Еще одна особенность электронной дроссельной заслонки некоторых моделей авто, которая для многих является недостатком – особые заводские установки работы дросселя. В ЭБУ заложена установка, которая исключает вероятность пробуксовки колес при старте. Достигается это тем, что при начале движения блок специально не открывает заслонку для получения максимальной мощности, по сути, ЭБУ дросселем «придушивает» двигатель. В некоторых случаях эта функция сказывается негативно.

На премиумных авто проблем с «откликом» системы впуска нет из-за нормальной проработки программного обеспечения. Также на таких авто нередко можно установить режим работы силовой установки по предпочтениям. К примеру, при режиме «спорт» перенастраивается работа и системы впуска, и в этом случае ЭБУ на старте уже не «душит» двигатель, что позволяет авто «резво» начать движение.