Как происходит запуск дизельного двигателя?

Как работает дизельный двигатель?

Автомобили с дизельными двигателями составляют почти половину от всего количества транспортных средств, ежегодно продаваемых как на официальных дилерских площадках, так и на вторичном рынке.

Силовые установки этого типа характеризуются экономичностью, значительной мощностью и динамикой. Такие агрегаты демонстрируют высокий крутящий момент и принципиально недоступный для бензиновых двигателей КПД (35%-35% у дизельных систем против 25%-35% у их аналогов). Эти преимущества, а также понизившийся уровень шума при эксплуатации и полное соответствие перманентно усложняющимся стандартам безопасности окружающей среды и обеспечили популярность дизелей как в легковом, так и в коммерческих классах транспортных средств.

Как происходит запуск дизельного двигателя?

Принцип работы дизельного двигателя следующий: в цилиндры поступает чистый воздух, который вследствие высокого сжатия нагревается до 700°С и более. После этого, при приближении поршня к верхней точке его траектории в камеру сгорания под давлением подается горючее, которое воспламеняется при контакте с горячим воздухом. Момент воспламенения сопровождается резким повышением давления в цилиндре. Такой принцип работы позволяет мотору работать на максимально обедненных смесях, что обеспечивает экономичность его эксплуатации.

Для холодного старта дизеля используется система предпускового нагрева, основным элементом которой являются свечи накаливания –нагревательные элементы, размещенные в камерах сгорания. Они позволяют за несколько секунд поднять температуру воздуха до требуемого значения. При включении системы в салоне загорается лампочка. Ее обесточивание свидетельствует о готовности двигателя к запуску. Подача электроэнергии к свечам прерывается автоматически, спустя 15сек – 25 сек после старта. Это условие позволяет обеспечить стабильную работу непрогретого агрегата. Современные системы данного типа делают возможным легкий запуск дизеля при температурах до -30°С при условии исправности мотора и использования масла и топлива соответствующей сезонности и качества.

Конструктивные особенности

Схема дизельного двигателя в целом повторяет механизм бензинового силового агрегата с той разницей, что аналогичные детали значительно усиливаются с учетом более высоких нагрузок. Поскольку воспламенение происходит в результате сжатия, из схемы исключаются компоненты системы зажигания, а свечи заменяются на элементы накаливания, не дающие искры и предназначенные для предварительного прогревания воздуха в камерах сгорания.

Характерной особенностью конструкции дизельного двигателя, связанной с самим принципом его работы, является геометрия днища поршней. Их форма определяется спецификой камеры сгорания. В верхней точке хода поршня, его днище оказывается выше самой крайней точки блока цилиндров. В некоторых случаях, в донышке поршня и располагается сама камера сгорания. От ее типа и реализованного способа подачи смеси и зависят технические и экологические характеристики конкретной модели дизельного двигателя.

Типы камер сгорания

В зависимости от их геометрии различают следующие виды камер сгорания.

Разделенные. В этом случае первичный впрыск горючего производится в отдельную полость, расположенную в головке блока. Такая технология позволяет снизить нагрузку на поршневую группу, а также значительно уменьшить шум от работы двигателя.

При этом процесс образования смеси может быть:

  • Форкамерным (предкамерным). Топливо под давлением поступает в предварительную камеру, соединенную с цилиндром несколькими каналами, где ударяется о ее стенки и таким образом смешивается с воздухом. После воспламенения смесь передается в основную камеру, где и дожигается полностью. Необходимый для максимально быстрого истечения газов через каналы перепад давления между цилиндром и форкамерой возникает в момент хода поршня на сжатие и на расширение.
  • Вихрекамерным. В этом случае первичное возгорание смеси также производится в отдельной камере, имеющей сферическую геометрию. В момент хода поршня на сжатие порция воздуха поступает в нее по соединительному каналу и интенсивно закручивается, образуя вихревой поток, за счет чего хорошо смешивается с горючим, поданным в определенный момент.

Характерными недостатками агрегатов с разнесенными камерами сгорания является усложненный запуск и повышенный расход топлива в связи с потерями при переходе порции воздуха в дополнительную камеру и обратного хода воспламененной смеси – в цилиндр.

Неразделенные. В этом случае горючее под давлением подается в цилиндр, а камерой служит полость, выбранная в донце поршня. В силу того, что такие агрегаты характеризуются повышенным уровнем шума и вибраций в процессе работы, особенно – при разгоне, до недавнего времени неразделенные агрегаты использовались на низкооборотистых моторах большого объема, предназначенных для коммерческого транспорта. Появление электронных систем впрыска позволило оптимизировать сгорание смеси в таких двигателях и значительно снизить уровень шума от их работы, что в свою очередь сделало неразделенные конструкции наиболее перспективным технологическим решением при проектировании новых типов силовых агрегатов.

Устройство топливной системы дизельного двигателя

Принцип работы дизельного двигателя обуславливает важность подачи в камеру сгорания строго дозированной порции смеси в определенный момент времени и под четко рассчитанным давлением. Система впрыска включает в себя следующие основные компоненты.

Топливный насос высокого давления (ТНВД). Этот элемент предназначается для забора порции горючего от расположенного в баке насоса подкачки и поочередной раздачи дозированных порций в индивидуальные трубопроводы форсунок на каждый цилиндр. Конструкция таких распылителей подразумевает их открытие при повышении давления в топливных магистралях. В зависимости от технологических решений различают следующие типы ТНВД:

  • Многоплунжерные рядные. Этот вариант насоса состоит из отдельных секций, по одной на цилиндр. Как правило, блоки имеют рядную сборку. Каждая секция снабжена гильзой и плунжером, который приводится в движение мотором через кулачковый вал. Давление в подаваемом горючем зависит от частоты оборотов коленвала. Специфика конструкции такого насоса обуславливает высокий уровень шума при его работе и сложность в соблюдении актуальных экологических норм.
  • Распределительные. Этот тип насосов поддерживает необходимое давление в соответствии с режимом эксплуатации двигателя и отличаются равномерностью подачи горючего по цилиндрам, а также – стабильной работой на высоких оборотах. Конструкции данного типа имеют один плунжер, который перемещается в двух плоскостях. Поступательные движения обеспечивают нагнетание порции горючего, а вращательные – распределяют его по форсункам. Специфика распределительных насосов обуславливает требовательность к качеству топлива, так как оно служит для смазки трущихся деталей, а прецизионные элементы имеют минимально допустимые зазоры.

Топливные фильтры. Эта деталь дизельного двигателя предназначается для отделения и последующего отвода воды из заправленного в бак горючего, для чего используется сливная пробка в нижней части. Удаление воздуха из системы производится с помощью ручного насоса, расположенного на верхней стороне корпуса. Несмотря на относительную простоту конструкции, фильтр требует внимательного подбора по таким параметрам, как пропускная способность, тонкость очистки и т.д. Для предотвращения забивания кристаллизующимися парафинами и облегчения запуска в холодное время года система может снабжаться электроподогревом.

Турбонаддув. Этот элемент предназначен для нагнетания в цилиндры дополнительного объема воздуха, что позволяет увеличить подачу горючего и повысить мощность силового агрегата. Принцип работы дизельного двигателя подразумевает высокое давление выхлопных газов, которое дает возможность обеспечить эффективность наддува с низких оборотов и при этом избежать эффекта «турбо-ямы». Отсутствие дроссельной заслонки в силовых агрегатах этого типа упрощает схему управления компрессором и позволяет поддерживать эффективность наполнения цилиндров во всем диапазоне оборотов. В первую очередь, наддув позволяет оптимизировать процессы сгорания смеси в ситуациях, в которых атмосферный силовой агрегат будет испытывать нехватку воздуха. Наличие турбины обеспечивает повышение мощности при меньшем рабочем объеме и меньшей массе мотора. При этом снижается жесткость его работы. Установка дополнительного интеркулера – промежуточного охладителя воздуха, позволяет дополнительно повысить мощность силового агрегата на 15% и более за счет увеличения массового наполнения цилиндров.

Специфика работы турбины обуславливает срок ее эксплуатации, значительно меньший, чем ресурс самого дизельного двигателя. При этом, в связи с форсированием, снижается и срок работы силового агрегата, в камерах сгорания которого постоянно поддерживается повышенная температура, требующая охлаждения подаваемым через дополнительные форсунки маслом. Эта конструктивная особенность влечет за собой критическую требовательность мотора к качеству смазочных материалов.

Форсунки. Этот элемент топливной системы предназначен для подачи строго отмеренной дозы горючего в точно рассчитанный момент времени. Появление электронного управления подачей топлива позволило организовать его двухступенчатую подачу неравномерными порциями. При воспламенении первичной дозы повышается температура в камере, после чего в нее поступает основной «заряд» на этот цикл. Такая схема дала возможность исключить скачкообразное нарастание давления и снизить шум работы двигателя. В зависимости от конструкции различают два типа распылителей.

  • Насос-форсунки. Эта конструкция объединяет в себе распылитель и плунжерный насос. Данный элемент устанавливается по одному на каждый цилиндр и приводится в действие толкателем, соединенным с кулачком распредвала. Линии подачи и слива горючего представляют собой технологические каналы в головке блока, благодаря чему может быть достигнуто давление до 2200 бар. Электронный блок управления отвечает за дозирование порции топлива и контроль угла опережения впрыска путем отправки сигналов на запорные пьезоэлектрические или электромагнитные клапаны. Конструкция насос-форсунок позволяет эксплуатировать их в многоимпульсном режиме, совершая от 2 до 4 впрысков за один цикл. Такая технология позволяет смягчить работу силового агрегата и снизить токсичность выхлопа.
  • Common Rail. Эта конструкция представляет собой общую топливную магистраль (рампу), в которой накапливается горючее, после чего по команде электронного управляющего блока впрыскивается через пьезоэлектрические или электромагнитные форсунки. Конструкция данного типа подразумевает применение ТНВД только для нагнетания давления в аккумуляторе, не используя его для регулировки момента впрыска и дозирования порций топлива. Такое конструктивное решение позволило сократить расход горючего до 20% при одновременном возрастании крутящего момента на малых оборотах до 25%. Электронный блок управления распылителями контролирует длительность фазы впрыска и оптимальный момент ее проведения по показателям ряда датчиков – температурного режима мотора, текущей нагрузки на него, давления в рампе, положение педали акселератора и т.д.

Сочетания турбины и системы Common Rail на сегодняшний день считается наиболее эффективным способом увеличения мощности дизельного двигателя при одновременном уменьшении токсичности его выхлопа.

Похожие статьи

ИСТОЧНИК: КОММЕРЧЕСКИЙ ТРАНСПОРТ 3 [156] 2020 Однажды дизель грузовика Volvo FL, который принадлежал частному предпринимателю, начал работать с перебоями, что заставило его .

Дизельные двигатели. Устройство и принцип работы

Все больше появляется автомобилей, у которых характерное постукивание из-под капота выдает тип установленного мотора. Разберем устройство, принцип работы и особенности дизельных двигателей.

Особенности дизельного двигателя, такие как экономичность, высокий крутящий момент и более дешевое топливо, делают его предпочтительным вариантом. Дизели последних поколений вплотную приблизились к бензиновым моторам по шумности, сохраняя при этом преимущества в экономичности и надежности.

Читайте также  Как определить по свечам зажигания работу двигателя?

Конструктивные особенности дизельных двигателей

По конструкции дизельный двигатель не отличается от бензинового — те же цилиндры, поршни, шатуны. Правда, клапанные детали существенно усилены, чтобы воспринимать более высокие нагрузки — ведь намного выше (19-24 единиц против 9-11 у бензинового мотора). Именно этим объясняется большой вес и габариты дизельного двигателя в сравнении с бензиновым.

Принципиально отличие заключается в способах формирования топливно-воздушной смеси, ее воспламенения и сгорания. У бензинового мотора смесь образуется во впускной системе, а в цилиндре воспламеняется искрой свечи зажигания. В дизельном двигателе подача топлива и воздуха происходит раздельно. Вначале в цилиндры поступает чистый воздух. В конце сжатия, когда он нагревается до температуры 700-800 о С, в камеру сгорания форсунками, под большим давлением впрыскивается топливо, которое почти мгновенно самовоспламеняется.

Рекомендую к прочтению:

Самовоспламенение сопровождается резким нарастанием давления в цилиндре — отсюда повышенная шумность и жесткость работы дизеля. Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Экологические характеристики тоже лучше — при работе на бедных смесях выбросы вредных веществ заметно меньше, чем у бензиновых моторов.

Типы дизельных двигателей

Существует несколько типов дизельных двигателей, различие между которыми заключено в конструкции камеры сгорания. В дизелях с неразделенной камерой сгорания — их называю дизелями с непосредственным впрыском — топливо впрыскивается в надпоршневое пространство, а камера сгорания выполнена в поршне. Непосредственный впрыск применялся в основном на низкооборотных двигателях большого рабочего объема. Это было связано с трудностями процесса сгорания, а также повышенным шумом и вибрацией.

Благодаря внедрению топливных насосов высокого давления (ТНВД) с электронным управлением, двухступенчатого впрыска топлива и оптимизации процесса сгорания удалось добиться устойчивой работы дизеля с неразделенной камерой сгорания на оборотах до 4500 об/мин, улучшить его экономичность, снизить шум и вибрацию.

Наиболее распространенным является другой тип дизеля — с раздельной камерой сгорания. Впрыск топлива осуществляется не в цилиндр, а в дополнительную камеру. Обычно применяется вихревая камера, выполненная в головке блока цилиндров и соединенная с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался, что улучшает процесс самовоспламенения и смесеобразования. Самовоспламенение начинается в вихревой камере, а затем продолжается в основной камере сгорания.

При раздельной камере сгорания снижается темп нарастания давления в цилиндре, что способствует снижению шумности и повышению максимальных оборотов. Вихрекамерные двигатели составляют большинство среди устанавливаемых на легковые автомобили и джипы (около 90 %).

Устройство топливной система дизельного двигателя

Важнейшей системой дизеля является система топливоподачи. Ее функция — подача строго определенного количества топлива в заданный момент и с заданным давлением. Высокое давление топлива и требования к точности делают топливную систему сложной и дорогой.

ТНВД — топливный насос высокого давления.

ТНВД предназначен для подачи топлива к форсункам по строго определенной программе, в зависимости от режима работы двигателя и управляющих действий водителя. По своей сути современный всережимный ТНВД совмещает в себе функции сложной системы автоматического управления двигателем и главного исполнительного механизма, отрабатывающего команды шофера.

Нажимая педаль газа, водитель не увеличивает непосредственно подачу топлива, а лишь меняет программу работы регуляторов, которые уже сами изменяют подачу по строго определенным зависимостям от числа оборотов, давления наддува, положения рычага регулятора и т.п. На современных внедорожниках обычно применяются ТНВД распределительного типа.

ТНВД распределительного типа. Насосы этого типа получили широкое распространение на легковых дизелях. Они компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах благодаря быстродействию регуляторов. В то же время эти насосы предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.

Форсунки дизеля.

Другим важным элементом топливной системы является форсунка. Она вместе с ТНВД обеспечивает подачу строго дозированного количества топлива в камеру сгорания. Регулировка давления открытия форсунки определяет рабочее давление в топливной системе, а тип распылителя определяет форму факела топлива, которая имеет важное значение для процесса самовоспламенения и сгорания. Применяются обычно форсунки двух типов: со шрифтовым или многодырчатым распределителем.

Форсунка на двигателе работает в очень тяжелых условиях: игла распылителя совершает возвратно-поступательные движения с частотой в половину меньшей, чем обороты двигателя, и при этом распылитель непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из жаропрочных материалов с особой точностью и является прецизионным элементом.

Топливные фильтры дизеля.

Топливный фильтр, несмотря на его простоту, является важнейшим элементом дизельного мотора. Его параметры, такие, как тонкость фильтрации, пропускная способность, должны строго соответствовать определенному типу двигателя. Одной из его функций является отделение и удаление воды, для чего обычно служит нижняя сливная пробка. На верхней части корпуса фильтра часто установлен насос ручной подкачки для удаления воздуха из топливной системы.

Иногда устанавливается система электроподогрева топливного фильтра, позволяющая несколько облегчить запуск двигателя, предотвращающая забивание фильтра парафинами, образующимися при кристаллизации дизтоплива в зимних условиях.

Как происходит запуск дизельного двигателя?

Холодный пуск дизеля обеспечивает система предпускового подогрева. Для этого в камеры сгорания вставлены электрические нагревательные элементы — свечи накаливания. При включении зажигания свечи за несколько секунд разогреваются до 800-900 о С, обеспечивая тем самым подогрев воздуха в камере сгорания и облегчая самовоспламенение топлива. О работе системы водителю в кабине сигнализирует контрольная лампа.

Погасание контрольной лампы свидетельствует о готовности к запуску. Электропитание со свечи снимается автоматически, но не сразу, а через 15-25 секунд после запуска, чтобы обеспечить устойчивую работу непрогретого двигателя. Современные системы предпускового подогрева обеспечивают легкий пуск исправного дизеля до температуры 25-30 о С, разумеется, при условии соответствия сезону масла и дизтоплива.

Турбонаддув дизельного двигателя

Эффективным средством повышения мощности и гибкости работы дизеля является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате увеличивается мощность двигателя. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала — «турбоямы».

Турбодизель имеет и некоторые недостатки, связанные с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя и не превышает обычно 150 тыс. км. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Подробнее в статье: .

Система Common-Rail для дизельного двигателя

Компьютерное управление подачей топлива позволило впрыскивать его в камеру сгорания цилиндра двумя точно дозированными порциями. Сначала поступает крохотная, всего около миллиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно.

В результате в дизелях с системой Common-Rail расход топлива двигателем сокращается примерно на 20%, а крутящий момент на малых оборотах коленвала возрастает на 25%. Также уменьшается содержание в выхлопе сажи и снижается шумность работы мотора. Подробнее в статье:

Дизельный двигатель: устройство и особенности работы

С каждым годом всё больше водителей делают выбор в пользу дизельных автомобилей. Они имеют меньший расход топлива, дешевле в эксплуатации и обладают длительным сроком службы. Но у тех, кто впервые встречает данный тип двигателя, может возникнуть ряд вопросов. Итак, как работает дизельный двигатель, какие у него особенности и есть ли недостатки?!

Устройство и работа дизельного двигателя

Дизельный мотор – это поршневой двигатель внутреннего сгорания. Принцип его работы основан на том, что топливо самовоспламеняется за счёт того, что подаётся сжатый воздух. Его конструкция практически не отличается бензинового силового агрегата. Исключением является лишь то, что в дизеле нет системы зажигания: топливная смесь зажигается не от искры, а благодаря высокому давлению. Оно сжимает воздух, за счет чего тот сильно разогревается и поджигает топливную смесь.

На протяжении многих десятилетий дизельные двигатели устанавливают на спецтехнику и грузовики, а также и на легковые автомобили. Если раньше такой мотор имел ряд недостатков, то сегодня существуют специальные присадки и приспособления, которые «подогревают» топливную смесь, благодаря чему машина без проблем заводится даже в -30.

На данный момент существует несколько типов дизельного топлива. Это может быть рапсовое масло, чистая или переработанная нефть, фрикционные вещества и т.д.

Принцип работы дизельного двигателя

Принцип работы дизельного мотора основан на компрессионном воспламенении топлива. Оно попадает в камеру сгорания, где начинает смешиваться с горячим воздухом. Работа самого двигателя зависит от количества воздуха и других особенностей.

Подача ТВС происходит раздельно: сначала подаётся воздух, который во время сжатия нагревается до 700-900 градусов. После этого подаётся топливо под высоким давлением до 30 (МПа). Всё это смешивается и воспламеняется, благодаря чему запускается мотор.

Во время воспламенения топливно-воздушной массы может возникать повышенный шум и сильные вибрации. Но они не создают особого дискомфорта.

Порядок работы дизельного двигателя

Дизельный ДВС может иметь 2 или 4 рабочих такта:

  • впуск или всасывание. На данном этапе воздух поступает в цилиндр через открытый впускной клапан;
  • сжатие. Под действием поршня воздух, который поступает в цилиндр, сжимается в несколько раз, а его температура возрастает до 800-00 градусов;
  • рабочий ход. Газы, образующиеся во время горения, перемещают плунжер вниз;
  • выпуск или рабочий такт. Коленвал вращается на 540-720 градусов от исходного положения, цилиндр перемещается вниз, а выхлопные газы опускаются.

Многие современные автомобили и грузовики оснащаются четырёхтактным мотором.

Тип дизельных ДВС

Существует три основных типа дизельного двигателя:

  • с разделённой камерой сгорания. В нём подача топлива осуществляется в дополнительную камеру. Воздух поступает в вихревую камеру, сжимается, что позволяет улучшить процесс возгорания топлива;
  • с неразделённой камерой сгорания. Данный двигатель отличается своей экономичностью, но в то же время он обладает высоким уровнем шума, что может вызывать определённый дискомфорт у водителя и пассажиров;
  • предкамерный мотор. Подобный ДВС оснащается вставной форкамерой. Она соединяется с цилиндром при помощи тонких клапанов. Именно от формы и размера каналов зависит скорость движения газов во время сгорания ТВМ. Данный тип двигателя отличается тем, что он имеет низкий уровень шума и токсичности, что позволяет увеличить срок его службы.
Читайте также  Как промыть масляные каналы двигателя?

Наибольшей популярностью пользуется последний вариант. Во время езды он не создаёт лишнего шума, благодаря чему вас ничего не отвлекает.

Система работы дизельного двигателя

Главным узлом любого мотора является его топливная система. Её основная задача – это своевременная подача топлива. При этом оно должно иметь определённое давление и температуру. Если эти два правила не соблюдаются, то автомобиль просто не заведётся.

Основными элементами дизельного двигателя являются следующие элементы:

  • топливный насос;
  • фильтр;
  • форсунки.

Давайте более детально остановимся на каждом из этих элементов.

Топливный насос

Он отвечает за подачу топлива к форсункам. Современные двигатели оснащаются топливными насосами двух типов: рядные и распределительные.

Топливный фильтр

Фильтр – это один из самых главных элементов любого мотора. Он очищает топливную смесь от мусора, различных частиц и лишнего воздуха, который может попасть в систему. Фильтр подбирается в соответствии с моделью авто.

Форсунки

Форсунки также играют важную роль для топливной системы. Они отвечают за своевременную подачу топлива, поэтому от их надёжности зависит работоспособность и срок службы самого мотора.

В дизельных ДВС применяются форсунки 2-х типов:

  • с распределителем;
  • со шрифтовым распределителем.

Распределитель форсунок определяет интенсивность и форму факела отвечает за своевременность и интенсивность возгорания.

Преимущества и недостатки дизельного двигателя

Отдельно хотелось бы рассмотреть плюсы дизельного двигателя. К ним можно отнести следующие моменты:

  • низкий расход топлива. Дизельные моторы примерно на 30-40% меньше расходуют топлива, чем бензиновые ДВС;
  • длительный срок службы. Дизельные агрегаты самые надёжные моторы в мире. Многие из них с лёгкостью преодолевают отметку в 700-800 тысяч километров;
  • прекрасный разгон и отличная тяга. Дизельные моторы отличаются большим крутящим моментом, что позволяет автомобилю уверенно разгоняться на любой скорости;
  • низкий уровень токсичности. Существует миф, что дизель обладает высокой токсичностью. Но это было раньше, поскольку современные системы переработки топлива снижают количество вредных веществ до минимума;
  • высокий КПД. Дизельное топливо сгорает с большой отдачей.

Но, несмотря на очевидные преимущества дизельных двигателей, у него существуют и небольшие недостатки. К ним относится долгий прогрев в холодную погоду. Поскольку дизельный агрегат отличается минимальным расходом топлива и высоким КПД, ему нужно больше времени на прогрев.

Ремонт дизельного двигателя в автосервисе Авто-Максима ЮАО Москвы

В целом, дизельные моторы имеют больше преимуществ, чем недостатков. В первую очередь это низкий расход топлива и длительный срок службы. Но, даже несмотря на свою надёжность, даже «дизеля» могут выходить из строя. Чаще всего это происходит по причине плохих дорог или неправильной эксплуатации.

Если у вас вдруг случилась поломка, и вам нужно произвести ремонт дизельного двигателя, вы можете смело обращаться в автосервис «Авто Максима» в ЮАО Москвы. Наши специалисты выполнят все необходимые работы в оперативные сроки, а вы получите исправный автомобиль и гарантию на все виды работ.

Дизельный двигатель: устройство и схема работы

Дизельный двигатель – двигатель внутреннего сгорания, изобретенный Рудольфом Дизелем в 1897 году. Устройство дизельного двигателя тех лет позволяло использовать в качестве топлива нефть, рапсовое масло, и твердые виды горючих веществ. Например, каменноугольную пыль.

Принцип работы дизельного двигателя современности не изменился. Однако моторы стали более технологичными и требовательными к качеству топлива. Сегодня в дизелях используется только высококачественное ДТ.

Моторы дизельного типа отличаются топливной экономичностью и хорошей тягой при низких оборотах коленвала, поэтому получили широкое распространение на грузовых автомобилях, кораблях и поездах.

С момента решения проблемы высоких скоростей (старые дизели при частом использовании на высоких скоростях быстро выходили из строя) рассматриваемые моторы стали часто устанавливаться на легковые авто. Дизели, предназначенные для скоростной езды, получили систему турбонаддува.

  1. Принцип работы двигателя Дизеля
  2. Как устроен дизельный двигатель
  3. Плюсы и минусы дизельного мотора
  4. Дизельный двигатель с турбонаддувом
  5. Турбояма
  6. Интеркуллер

Принцип работы двигателя Дизеля

Принцип действия мотора дизельного типа отличается от бензиновых моторов. Здесь отсутствуют свечи зажигания, а топливо подается в цилиндры отдельно от воздуха.

Цикл работы такого силового агрегата можно представить в следующем виде:

  • в камеру сгорания дизеля подается порция воздуха;
  • поршень поднимается, сжимая воздух;
  • от сжатия воздух нагревается до температуры около 800˚C;
  • в цилиндр впрыскивается топливо;
  • ДТ воспламеняется, что приводит к опусканию поршня и выполнению рабочего хода;
  • продукты горения удаляются с помощью продувки через выпускные окна.

От того, как работает дизельный двигатель, зависит его экономичность. В исправном агрегате используется бедная смесь, что позволяет сэкономить количество топлива в баке.

Как устроен дизельный двигатель

Основным отличием конструкции дизеля от бензиновых моторов является наличие топливного насоса высокого давления, дизельных форсунок и отсутствие свечей зажигания.

Общее устройство этих двух разновидностей силового агрегата не различается. И в том, и в другом имеются коленчатый вал, шатуны, поршни. При этом у дизельного мотора все элементы усилены, так как нагрузки на них более высокие.

На заметку: некоторые движки дизельного типа имеют свечи накаливания, которые ошибочно принимаются автолюбителями за аналог свечей зажигания. На самом деле, это не так. Свечи накаливания используются для нагрева воздуха в цилиндрах в мороз.

При этом дизель легче заводится. Свечи зажигания в бензиновых моторах применяются для воспламенения топливовоздушной смеси в процессе работы двигателя.
Систему впрыска на дизелях делают прямой, когда топливо поступает непосредственно в камеру, или непрямой, когда воспламенение происходит в предкамере (вихревая камера, фор-камера). Это небольшая полость над камерой сгорания, с одним или несколькими отверстиями, через которые туда поступает воздух.

Такая система способствует лучшему смесеобразованию, равномерному нарастанию давления в цилиндрах. Зачастую именно в вихревых камерах применяются калильные свечи, призванные облегчить холодный пуск. При повороте замка зажигания, автоматически запускается процесс нагрева свечей.

Плюсы и минусы дизельного мотора

Как и любой другой тип силового агрегата, дизельный мотор имеет положительные и отрицательные черты. К «плюсам» современного дизеля относят:

  • экономичность;
  • хорошую тягу в широком диапазоне оборотов;
  • больший, чем у бензинового аналога, ресурс;
  • меньшее количество вредных выбросов.

Дизель не лишен и недостатков:

  • моторы, не оснащенные свечами накаливания, плохо заводятся в мороз;
  • дизель дороже и сложнее в обслуживании;
  • высокие требования к качеству и своевременности обслуживания;
  • высокие требования к качеству расходных материалов;
  • большая, чем у бензиновых движков, шумность работы.

Дизельный двигатель с турбонаддувом

Принцип работы турбины на дизельном двигателе практически не отличается от такового на бензиновых моторах. Суть заключается в нагнетании в цилиндры дополнительного воздуха, что закономерно увеличивает количество поступающего топлива. За счет этого отмечается серьезный прирост мощности мотора.

Устройство турбины дизельного двигателя также не имеет существенных отличий от бензинового аналога. Устройство состоит из двух крыльчаток, жестко связанных между собой, и корпуса, внешне напоминающего улитку. На корпусе турбокомпрессоров имеется 2 входных и 2 выходных отверстия. Одна часть механизма встраивается в выпускной коллектор, вторая во впускной.

Схема работы проста: газы, выходящие из работающего мотора, раскручивают первую крыльчатку, которая вращает вторую. Вторая крыльчатка, вмонтированная во впускной коллектор, нагнетает атмосферный воздух в цилиндры. Увеличение подачи воздуха приводит к увеличению подачи топлива и росту мощности. Это позволяет мотору быстрее набирать скорость даже на низких оборотах.

Турбояма

В процессе работы турбина может совершать до 200 тысяч оборотов в минуту. Раскрутить ее до необходимой скорости вращения моментально невозможно. Это приводит к появлению т.н. турбоямы, когда с момента нажатия на педаль газа до начала интенсивного разгона проходит некоторое время (1-2 секунды).

Проблема решается доработкой турбинного механизма и установкой нескольких крыльчаток разного размера. При этом маленькие крыльчатки раскручиваются моментально, после чего их догоняют элементы большого размера. Такой подход позволяет практически полностью ликвидировать турбояму.

Также производятся турбины с изменяемой геометрией, VNT (Variable Nozzle Turbine), призванные решать те же проблемы. В настоящий момент существует большое количество модификаций подобного типа турбин. Коррекция геометрии успешно справляется и с обратной ситуацией, когда оборотов и воздуха становится слишком много и необходимо притормозить обороты крыльчатки.

Интеркуллер

Было замечено, что если при смесеобразовании используется холодный воздух, КПД двигателя увеличивается до 20%. Это открытие привело к появлению интеркуллера – дополнительного элемента турбин, повышающего эффективность работы.

После всасывания воздуха он проходит через радиатор, и в охлажденном состоянии попадает во впускной коллектор. Мы уже публиковали статью, в которой можно подробно ознакомиться со схемой работы интеркуллера.

За турбиной современного автомобиля необходимо должным образом ухаживать. Механизм крайне чувствителен к качеству моторного масла и перегреву. Поэтому смазочный материал рекомендуется менять не реже, чем через 5-7 тысяч километров пробега.

Кроме того, после остановки машины следует оставлять ДВС включенным на 1-2 минуты. Это позволяет турбине остыть (при резком прекращении циркуляции масла она перегревается). К сожалению, даже при грамотной эксплуатации ресурс компрессора редко превышает 150 тысяч километров.

На заметку: оптимальным решением проблемы перегрева турбины на дизельных моторах является установка турботаймера. Устройство оставляет двигатель запущенным на протяжении необходимого времени после выключения зажигания. После окончания необходимого периода электроника сама выключает силовой агрегат.

Строение и принцип действия дизельного двигателя делают его незаменимым агрегатом на тяжелом транспорте, которому необходима хорошая тяга «на низах». Современные дизели с равным успехом работают и в легковых автомобилях, главное требование к которым: приемистость и время набора скорости.

Сложный уход за дизелем компенсируется долговечностью, экономичностью и надежностью в любых ситуациях.

Система впрыска дизельного двигателя

Система впрыска дизельного двигателя отличается от бензинового. В камере сгорания дизельного двигателя происходит воспламенение топлива. В бензиновом поджигается топливная смесь. Приготовленная, вне камеры сгорания и в определенном соотношении.

Читайте также  Как поменять помпу на газели 406 двигатель?

Поэтому воспламенение топлива дизельного двигателя имеет свои особенности. Основываются ни на физических свойствах воздуха и непосредственно дизельного топлива. Эти свойства определяют конструктивные особенности. Различных систем впрыска топлива.

Воспламенение дизельного топлива.

Поршень сжимает воздух в камере сгорания. Поршневая группа позволяет создать компрессию в камере сгорания выше 25 вар. Если это происходит. Температура сжимаемого воздуха поднимается до 700- 900 градусов по цельсию.

Нагрев воздуха в камере сгорания

Нагрев воздуха происходит. Из а того , что при сжатии уменьшаются расстояния между молекулами воздуха . Молекулы находятся в постоянном движении. И чем меньше между ними расстояние. тем чаще они сталкиваются друг с другом. В результате выделяется большое количество кинетической энергии. Которая переходит в тепловую. Чем сильнее давление на воздух тем меньше расстояние между молекулами. Те выше поднимается температура сжимаемого воздуха.

Как происходит воспламенение.

Сжатый воздух нагрет до температуры 700-900 градусов. В момент когда поршень начинает подходить к верхней мертвой точке. Форсунка впрыскивает топливо под давлением. Топливо распыляется на мелкие капли. Капля от движения начинает испаряться и вокруг неё образуется облако пара. Температура воспламенения дизельного топлива составляет 350 градусов по Цельсию. То есть при температуре сжатого воздуха даже в 500 градусов. Пары топлива гарантированно самовоспламеняются. И от горения начинают расширяться. Создаётся давление в цилиндре. К моменту когда поршень подойдет к верхней мертвой точке. Топливо воспламенится все полностью и создаст максимальное давление в камере сгорания. Это давление и будет совершать работу двигателя. По мере удаления поршня от верхней мертвой точки топливо догорает. Создавая тем самым дополнительное давление на поршень.

Качество сгорания топлива во многом определяет давление с которым происходит впрыск топлива в камеру сгорания. Чем быстрее и эффективнее сгорает топливо тем выше создаваемое им давление. Чем выше давление распыления в форсунках. Тем капли мельче и быстрее движутся. Соответственно быстрее сгорают. Поэтому при одном и том же объёме камеры сгорания можно достичь повышение мощности двигателя за счет увеличения давления впрыска топлива.

Увеличение мощности двигателя

Современные системы впрыска позволяют поднять давление распыления до 2000 Вар. Выше создать давление не получается из за конструктивных особенностей двигателя внутреннего сгорания. То есть двигатель может не справиться с возникающим давлением и разрушится

Увеличение объёма воздуха в камере сгорания

Мощность двигателя можно повысить за счет увеличения объема воздуха поступающего в камеру сгорания. Так как воздух содержит кислород. И чем его больше тем интенсивнее происходит сгорание топлива. Цилиндр имеет рабочий объём, который изменить нельзя. Но можно в этот объём разместить большее количество воздуха. Если предварительно его сжать.

Происходит это с помощью турбокрмпрессора. Он создаёт избыточное давление поступающего в цилиндр воздуха. В результате его попадет большее количество. Если бы поршень закачивал воздух самостоятельно. Но в результате попадания воздуха в турбокомпрессор он нагревается от температуры турбины и от создаваемого им сжатия. Требуется его охлаждение.

При охлаждении движение молекул замедляется. В результате чего они начинают занимать меньший объём в пространстве. Технически охлаждение воздуха происходит путем применения радиатора. Его называют интеркулер. В интеркулере воздух охлаждается встречным потоком воздуха. При движении автомобиля. Сжатый воздух дополнительно охлаждается и подаётся в цилиндры. Но применение интеркулера возможно только при наличии турбокомпрессора. Потому что если применять его отдельно, он затруднит поступление воздуха в цилиндры. И повышения мощности не произойдет.

Топливо попавшее в цилиндр должно сгореть полностью. От этого зависит эффективная работа двигателя. Безусловно дополнительная порция воздуха помогает это сделать. Но не решает проблемы в целом. Двигатель работает в разных режимах. При увеличении оборотов. Уменьшается время на горение топлива. А не полное его сгорания снижает мощность работы. В связи с уменьшением возникающего давления на поршень. Автомобили несут на себе разную нагрузку. При одних и тех же оборотах двигателя требуется разное количество топлива для движения автомобиля. Поэтому постоянно разрабатываются различные системы впрыска топлива. Которые пытаются более точно регулировать объём поступающего топлива в цилиндры. При работе на разных режимах работы двигателя.

Классическая система впрыска топлива.

Основана на использовании топливного насоса высокого давления. Он распределяет давление топлива по цилиндрам. В зависимости от схемы работы данного двигателя. Полость ТНВД наполняется топливом при помощи подкачивающего насоса. Который расположен на корпусе ТНВД и приводится в действие от вала ТНВД. Подкачивающий насос закачивает топливо из бака Направляет его в фильтры тонкой очистки. И затем топливо попадает в ТНВД. Полость топливного насоса высоко давления наполняется. В ней находятся плунжерные пары. Они захватывают топливо. И создают высокое давление. Которое и подаётся к форсункам. Форсунка устроена таким образом. Что накапливает получаемое давление от плунжера. И при достижении нужного давления открывает каналы через которые распыляется топливо. Это классическая схема. Насос позволяет менять частоту вращения коленчатого вала двигателя. Путем изменения количества подаваемого топлива в цилиндры.

Кроме этого некоторые насосы имеют возможность изменять угол опережения зажигания. За счет применения центробежных грузиков. При увеличении числа оборотов двигателя происходит смещение вала насоса относительно привода. Эта система рассчитывается на средние показатели работы двигателя. На различных предполагаемых режимах работы. И не может влиять на не предусмотренные нагрузки. Такие как уменьшение или увеличении перевозимого груза. Спуск подъем. Дорожное покрытие. Количество топлива будет соответствовать только количеств требуемых оборотов двигателя.

Соответственно топлива будет либо не хватать. Либо подаваться избыточное количество. В результате не достигается полное сгорание топлива в цилиндрах, и как результат низкий коэффициент полезного действия. Влияющий отрицательно на расход топлива и мощность двигателя и показатели экологии. Требования предъявляемые к экологии в конечном итоге оказались главным фактором эволюции системы впрыска. Чем топливо лучше сгорает в камере сгорания. Тем образуется меньше вредных выбросов окружающую среду. Соответственно чем эффективнее сгорание топлива лучше характеристики двигателя. Конструктора длительное время усовершенствовали систему впрыска дизельного топлива.

Но всё это были как правило вариации на тему ТНВД. Впрыск топлива производился в полном объёме. Поэтому при работе дизельного двигателя слышен характерный стук. Воспламеняется топливо поданное в цилиндр, давление возрастает В ВМТ до максимальной величины. И происходит сильный удар.

Современная система впрыска дизельного двигателя способна производить подачу впрыска в несколько этапов. Как производить производить предварительный поджог топлива. Предварительная подача топлива называется пилотным впрыском. Когда поршень проходит отметку угла опережения зажигания происходит предварительный впрыск топлива. Небольшое количество топлива загорается. Затем даётся еще какое то количество топлива.

Таких предварительных впрысков может достигать до 5. После пилотного впрыска происходит основной впрыск. Уже в горящее топливо. Основное количество топлива быстрее загорается и сгорает более эффективно. В результате двигатель работает плавно без резких ударов. А более полное сгорание топлива обеспечивает низкий уровень выброса вредных веществ и повышение мощностных характеристик двигателя. Подобный впрыск может обеспечить только система Комон рейл

Система Комон рейл

Управление впрыском топлива происходит при помощи электронного блока управления. Количество подаваемого топлива учитывается от числа оборотов двигателя, скорости движения и возникающих нагрузок в процессе движения автомобиля. Система впрыска дизельного двигателя комон рейл позволят достичь максимально возможного давления впрыска топлива. Поэтому она и получила широкое распространение на современных двигателях.

Система common rail принцип работы

Насос создаёт высокое давление не для каждой форсунки в отдельности а для всех сразу. Давление аккумулируется в расширительной трубке рейле. Все форсунки соединены с рейлом. Впрыск топлива осуществляется за счет работы электро магнитного клапана в форсунках. Управление клапанами осуществляет электронный блок. На основании данных которые он получает от датчиков.

  • положение коленчатого вала
  • положение распределительного вала
  • температуры поступающего воздуха-
  • температуры двигателя
  • давление топлива в рейл
  • количество сгоревшего топлива
  • положение педали газа

В зависимости от полученных данных ЭБУ определяет время открытия и закрытия форсунок. То есть количество необходимого топлива. Угол опережения зажигания.

Достигается максимальное сгорание топлива на разных режимах работы двигателя.

Устройство системы комон рейл

Система комон рейл состоит из элементов низкого и высокого давления топлива.

Элементы низкого давления обеспечивают подачу топлива до насоса высокого давления. Низкое давление является составной частью нагнетания высокого. То есть оно должно иметь определённую величину. Чтобы насос высокого давления эффективно работал.

В систему низкого давления входят топливоподводящие трубки. Фильтра грубой и тонкой очистки топлива. И как правило шестеренный насос низкого давления.

Элементы высокого давления производят нагнетание рабочего давления топлива в камере сгорания.

К ним относятся:

  • Насос высокого давления
  • Рейл
  • Подводящие трубки к форсункам
  • Форсунки распыляющие топливо в камере сгорания

В связи с тем что система подводит давление к форсункам одновременно. Затрудняется поиск неисправностей. Если одна форсунка вышла из строя. Например перестала сдерживать рабочее давление. Двигатель работать не сможет. Потеря давления в одной форсунке не позволит создать давление во всей системе.

Неплотное соединение между элементами высокого давления так же позволит создать давление нагнетания.

Например очень часто форсунки подключаются к рейл при помощи удлинителей(морковок) Форсунка имеет конусное отверстие. И в это отверстие прилегает конус удлинителя. Если в соединении трубки удлинителя и форсунки будет повреждение. И трубка не плотно приляжет к форсунке. Давление в системе уже не создаться. И двигатель не заведется. Все соединения должны быть надёжными и предельно прочными. Попадание малейших частиц грязи приведет к неисправности. Иногда требуется ремонт форсунок. Их снимают везут в мастерскую. Соединительные трубки остаются в пыли и грязи ждать форсунки. При установке отремонтированных форсунок их прикручивают как они и лежали. Мотор естественно не заводится из за попавшей грязи в форсунки. А винить начинают мастеров. Диагностика неисправности системы впрыска комон рейл производится при помощи тестера. Который считывает коды ошибок выдаваемых электронным блоком. Но этих данных бывает недостаточно для определения истинной причины неисправности.

Система впрыска дизельного двигателя подвергается постоянной эволюции. Связано это с требованиями экологии. По уменьшению вредных выбросов отработанных газов. А это в свою очередь и есть путь к повышению эффективности работы двигателя и экономии топлива.